Как Называется Прибор Для Измерения Давления В Физике?

Как Называется Прибор Для Измерения Давления В Физике
Измерение давления необходимо для управления технологическими процессами и обеспечения безопасности производства. Кроме того, этот параметр используется при косвенных измерениях других технологических параметров: уровня, расхода, температуры, плотности и так далее.

  1. В Международной системе единиц (СИ) за единицу давления принят Паскаль (Па).
  2. В большинстве случаев первичные преобразователи давления имеют неэлектрический выходной сигнал в виде силы или перемещения и объединены в один блок с измерительным прибором.
  3. Если результаты измерений необходимо передавать на расстояние, то применяют промежуточное преобразование этого неэлектрического сигнала в унифицированный электрический или пневматический.

При этом первичный и промежуточный преобразователи объединяют в один измерительный преобразователь, В зависимости от измеряемой среды (ИС) — газ, пар или жидкость используются различные способы отбора давления. Имеются специфические особенности измерения агрессивных, вязких, высокотемпературных, низкотемпературных, «грязных» сред, в воздухопроводах, дымоходах, пылепроводах и т.д. В большинстве приборов измеряемое давление преобразуется в деформацию упругих элементов, поэтому они называются деформационными. Деформационные приборы широко применяют для измерения давления при ведении технологических процессов благодаря простоте устройства, удобству и безопасности в работе.

Все деформационные приборы имеют в схеме какой-либо упругий элемент, который деформируется под действием измеряемого давления: трубчатую пружину (трубка Бурдона), мембрану или сильфон. Также существуют грузопоршневые манометры, в которых ничего не деформруется. Наибольшее применение получили приборы с трубчатой пружиной.

Их выпускают в виде показывающих манометров и вакуумметров c максимальным пределом измерений. В таких приборах с изменением измеряемого давления р трубчатая пружина / изменяет свою кривизну. Её свободный конец через тягу поворачивает зубчатый сектор и находящуюся с ним в зацеплении шестерню.

Вместе с шестерней поворачивается закрепленная на ней стрелка, перемещающаяся вдоль шкалы. Для дистанционной передачи показаний выпускают манометры с промежуточными преобразователями с токовым и пневматическим выходом (МП-Э, МП-П), а также с дифференциально-трансформаторными преобразователями (МЭД). Промышленность выпускает также мембранные дифманометры с промежуточными преобразователями, имеющими унифицированные токовые или пневматические сигналы.

Для преобразования деформации мембраны в унифицированный токовый сигнал применяют также тензорезисторные промежуточные преобразователи, в которых сопротивление резистора изменяется при его растяжении или сжатии. В таких приборах тензорезистор укреплен на жесткой измерительной мембране.

  • Деформация мембраны, пропорциональная приложенному давлению, приводит к деформации тензорезистора и изменению его сопротивления.
  • Это сопротивление преобразуется измерительной схемой, включающей неуравновешенный мост, в выходной сигнал постоянного тока.
  • Так как деформация жесткой мембраны мала, то применяют полупроводниковые кремниевые тензорезисторы, обладающие высокой чувствительностью.

В дифманометрах чувствительным элементом служит блок из двух неупругих мембран, соединенных между собой штоком. Смещение этого штока под действием перепада давлений приводит к изгибу рычага и деформации измерительной мембраны. Мембраны выполнены из коррозионно-стойкого материала, что позволяет использовать дифманометр для измерений в сильноагрессивных средах.

Для измерения давления агрессивных сред применяют датчики, снабженные защитной мембраной, изготовленной из коррозионно-стойкого материала. Измеряемое давление передается к измерительной мембране через силиконовое масло, которым заполнена внутренняя полость датчика. Промышленные тензорезисторные преобразователи предназначены для преобразования давления, разрежения и разности давлений в пропорциональное значение выходного сигнала — постоянного тока.

Особенности эксплуатации приборов для измерения давления При эксплуатации приборов, измеряющих давление, часто требуется защита их от агрессивного и теплового воздействия среды. Если среда химически активна по отношению к материалу прибора, то его защиту производят с помощью разделительных сосудов или мембранных разделителей.

Разделительный сосуд заполняется жидкостью, инертной по отношению к материалу прибора, соединительных трубок и самого сосуда. Кроме того, разделительная жидкость не должна химически взаимодействовать с измеряемой средой или смешиваться с ней. В качестве разделительных жидкостей применяют водные растворы глицерина, этиленгликоль, технические масла и др.

В мембранном разделителе измеряемая среда отделяется от прибора мембраной с малой жесткостью из нержавеющей стали или фторопласта, Для передачи давления от мембраны к прибору полость между ними заполняют жидкостью. Для предохранения прибора от действия высокой температуры среды применяют сифонные трубки,

  1. Деформационные приборы требуют периодической поверки,
  2. В эксплуатационных условиях у них проверяют нулевую и рабочую точки шкалы.
  3. Для этого применяют трехходовые краны.
  4. При поверке нулевой точки прибор соединяют с атмосферой.
  5. Стрелка прибора должна вернуться к нулевой отметке.
  6. Поверку прибора в рабочей точке шкалы осуществляют по контрольному манометру, укрепляемому на боковом фланце.

При пользовании краном необходимо строго соблюдать плавность включения и выключения прибора. С помощью трехходового крана можно проводить также продувку соединительной линии.

Как называются приборы для измерения?

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 25 мая 2021 года; проверки требуют 6 правок,

Эта статья описывает ситуацию применительно лишь к одному региону ( Россия ), возможно, нарушая при этом правило о взвешенности изложения, Вы можете помочь Википедии, добавив информацию для других стран и регионов.

Школьный стрелочный вольтметр Измери́тельный прибо́р — средство измерений, предназначенное для получения значений измеряемой физической величины в установленном диапазоне. Часто измерительным прибором называют средство измерений для выработки сигнала измерительной информации в форме, доступной для непосредственного восприятия оператором.

Сре́дство измере́ний — техническое средство, предназначенное для измерений, имеющее нормированные метрологические характеристики, воспроизводящее и (или) хранящее единицу физической величины, размер которой принимают неизменным (в пределах установленной погрешности ) в течение известного интервала времени.

Различают также измерительные приборы прямого действия и сравнения, В измерительном приборе прямого действия результат измерений снимается непосредственно с его устройства индикации. Примерами таких приборов являются амперметр, манометр, ртутно-стеклянный термометр.

Измерительные приборы прямого действия предназначены для измерений методом непосредственной оценки. В отличие от них, измерения методом сравнения с мерой проводится с помощью измерительных приборов сравнения, называемых также компараторами, Измерительный прибор сравнения — измерительный прибор, предназначенный для непосредственного сравнения измеряемой величины с величиной, значение которой известно.

Примерами компараторов являются: двухчашечные весы, интерференционный компаратор мер длины, мост электрического сопротивления, электроизмерительный потенциометр, фотометрическая скамья с фотометром. Компараторы для выполнения своих функций могут не хранить единицу измерения.

Такие компараторы, строго говоря, нельзя считать средствами измерений, тем не менее, они должны обладать рядом важных метрологических свойств, прежде всего, обеспечивать небольшую случайную погрешность и высокую чувствительность измерений. Связанные понятия: КИПиА — контрольно-измерительные приборы и аппаратура; также просто КИП,

Профессия рабочего, который обслуживает, ремонтирует и эксплуатирует различное контрольно-измерительное оборудование и системы автоматического управления — слесарь КИПиА,

В чем измеряется давление в физике?

Ст.1 мм вод. ст. Измерение давления газов и жидкостей выполняется с помощью манометров, дифманометров, вакуумметров, датчиков давления, атмосферного давления — барометрами, артериального давления — сфигмоманометрами.

Как называется прибор для измерения атмосфер давления?

Как называется прибор для измерения атмосферного давления? Как он устроен? Прибор измеряющий атмосферное давление называют, барометром. Действие их основано на измерении давления, которое оказывает столб атмосферы на площадь поверхности. При 00 С и над уровнем моря такой столб давит с силой, которую можно уравновесить 760 мм столба ртути такого же сечения.

Копировать с других сайтов запрещено. Стикеры и подарки за такие ответы не начисляются. Используй свои знания. :)Публикуются только развернутые объяснения. Ответ не может быть меньше 50 символов!

Читать подробнее: Как называется прибор для измерения атмосферного давления? Как он устроен?

Какие существуют виды приборов для измерения давления?

Классификация приборов для измерения давления — В зависимости от назначения приборы для измерения давления делятся на следующие основные группы: Манометры – для измерения избыточного давления. Вакуумметры – для измерения вакуумметрического давления (вакуума).

Мановакуумметры – для измерения вакуумметрического и избыточного давлений. Барометры – для измерения атмосферного давления. Баровакуумметры – для измерения абсолютного давления. Дифференциальные манометры – для измерения разности давлений. По принципу действия все приборы для измерения давления можно разделить на: Жидкостные — приборы, в которых измеряемое давление уравновешивается весом столба жидкости, а изменение уровня жидкости в сообщающихся сосудах служит мерой давления, называются жидкостными.

К этой группе относятся чашечные и U-образные манометры, дифманометры и др. Грузопоршневые — приборы, в которых измеряемое давление уравновешивается усилием, создаваемым калиброванными грузами, воздействующими на свободно передвигающийся в цилиндре поршень.

Приборы с дистанционной передачей показаний — приборы, в которых используются изменения тех или иных электрических свойств вещества (электрического сопротивления проводников, электрической емкости, возникновение электрических зарядов на поверхности кристаллических минералов и др.) под действием измеряемого давления.

К таким приборам относятся манганиновые манометры сопротивления, пьезоэлектрические манометры с применением кристаллов кварца, турмалина или сегнетовой соли, емкостные манометры, ионизационные манометры и др. Пружинные — приборы, в которых измеряемое давление уравновешивается силами упругости пружины, деформация которой служит мерой давления.

Благодаря простоте конструкции и удобству пользования пружинные приборы получили широкое применение в технике. К этой группе относятся разнообразные приборы, отличающиеся по виду пружин: манометры с трубчатой пружиной, манометры с пластинчатой пружиной, манометры с коробчатой пружиной, манометры абсолютного давления (баровакуумметры), дифференциальные манометры.

По метрологическому назначению измерительные приборы делятся на образцовые и рабочие. Образцовыми измерительными приборами называются приборы, предназначенные для поверки других измерительных приборов. Образцовые манометры имеют следующие классы точности: 0,05; 0,2 — грузопоршневые манометры; 0,16; 0,25; 0,4 — пружинные манометры.

В чем измеряется артериальное давление?

Артериальное давление норма, измерение артериального давления Артериальное давление — это давление крови в крупных артериях человека. Различают два показателя артериального давления: — Систолическое (верхнее) артериальное давление — в момент максимального сокращения сердца; — Диастолическое (нижнее) артериальное давление в момент максимального расслабления сердца.

Как называют приборы для измерения давления большего или?

Как называют приборы для измерения давлений, больших или меньших атмосферного? Для измерения давлений, больших и меньших атмосферного, используют манометры (от греч. манос — редкий, неплотный, метрео — измеряю). Знаешь ответ? Как написать хороший ответ? Будьте внимательны!

Копировать с других сайтов запрещено. Стикеры и подарки за такие ответы не начисляются. Используй свои знания. :)Публикуются только развернутые объяснения. Ответ не может быть меньше 50 символов!

Читать подробнее: Как называют приборы для измерения давлений, больших или меньших атмосферного?

Что такое манометр в физике?

Манометр — прибор для измерения давления жидкости или газа. Виды манометров:

жидкостный;металлический.

Рис. \(1\). Изображение жидкостного манометра Принцип действия жидкостного манометра основан на сравнении значений атмосферного давления и давления жидкости внутри прибора. Закрытую область, которая определяет давление \(P_1\), чаще соединяют (гибкой трубкой) с рабочей частью, в которой на жидкость давит атмосферное давление \(P_2\). Рис. \(2\). Изображение металлических манометров Такой манометр используют для измерения давления сжатого газа. Например, манометром пользуется водитель автомобиля, проверяя давление воздуха в колёсах. Главная часть манометра — согнутая полая трубка, запаянная с одного конца.

  • На другом конце трубки находится кран.
  • Когда соединяется данный конец с сосудом, в котором измеряют давление, трубка изгибается.
  • Так как она соединена механизмом со стрелкой, то стрелка поворачивается и по шкале можно определить давление газа.
  • Источники: Рис.1.
  • Автор: By Olivier Cleynen.
  • Own work, CC0, https://commons.wikimedia.org/w/index.php?curid=42850641.

Рис.2. Автор: Gennady Grachev from Moscow, Russia. VDNH 782, 2013-10-15, CC BY 2.0, https://commons.wikimedia.org/w/index.php?curid=70091464.

Что называется давлением физика?

Давление — физическая величина, численно равная силе, действующей на единицу площади поверхности, перпендикулярно этой поверхности.

Как называется трубка для манометра?

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 13 апреля 2012 года; проверки требуют 13 правок,

Пожалуйста, дополните её ещё хотя бы несколькими предложениями и уберите это сообщение. Если статья останется недописанной, она может быть выставлена к удалению. Для указания на продолжающуюся работу над статьёй используйте шаблон },

Трубка Перкинса (сифонная трубка) предназначена для охлаждения измеряемой среды в точке контактирования манометра и промышленной системы, а также для присоединения прибора к трубопроводу. Данное устройство предназначено для защиты манометра от температуры теплоносителя в трубопроводе.

Трубка способствует резкому понижению температуры в точке контакта с измеряемой средой. Существует 2 варианта исполнения данного изделия: трубка с прямым положением отводов и с угловым вариантом расположения входов в устройство. Условие защиты манометра достигается за счет конденсации пара в пространстве сифонной трубки.

Наличие воды в трубке сохраняет манометр от чрезмерных импульсов в системе. Положение сифонной трубки в пространстве обусловлено удобством забора жидкости из пространства прибора. Охлаждающая жидкость в трубке заполняется, перед запуском системы в эксплуатацию.

Изогнутая труба используется для установки в системах отопления, водоснабжения и перед напорным баллоном. Кроме этого импульсные трубки можно использовать для усиления контроля над работой котельного оборудования. Благодаря использованию данного прибора предотвращается преждевременная поломка манометра вследствие перегрева деталей устройства измерения давления.

Наличие импульсной защиты манометра позволяет измерять давления в любых условиях, даже в момент сильных перегрузок в сети. Низкая стоимость устройства позволяет произвести установку перед каждым манометром в системе для обеспечения безопасной и корректной эксплуатации коммуникаций.

В чем измеряется манометр?

Что такое манометр — Термин «манометр» в основе имеет два греческих слова: «измерять» и «неплотный». Из этого понятны его назначение и основные функции — измерения в неких неплотных средах (жидкостях и газах). Манометр — это прибор для измерения искусственно созданного давления газа или жидкости в замкнутой системе.

  1. Не следует путать его с барометром, который тоже показывает давление, но только атмосферное.
  2. В то время как с помощью манометра можно измерить, с какой силой жидкость или газ давит на стенки герметично закрытой емкости.
  3. Условно говоря, он показывает плотность воздуха внутри закрытого пространства.
  4. Единица измерения давления: паскаль (Па).

Она отражает силу в 1 Н, которая равномерно действует на площадь 1 кв.м. Также давление иногда измеряют в барах, атмосферах, миллиметрах ртутного или водяного столба.

Чем измеряется давление Физика 7 класс?

МАНОМЕТР — Для измерения давления жидкости или газов используют приборы, которые называют манометры, Манометры бывают жидкостные и металлические. Жидкостный манометр может измерять давления много меньшие, чем атмосферное. Он состоит из двухколенной стеклянной трубки, в которую налита какая-нибудь жидкость.

  1. Работа манометра основана на сравнении давления в закрытом колене с внешним давлением в открытом колене.
  2. По разности высот жидкости в коленах судят об измеряемом давлении.
  3. В обычном состоянии жидкость устанавливается в обоих коленах на одном уровне, так как на её поверхность действует только атмосферное давление.

Для демонстрации принципа работы манометра обычно используют следующее оборудование: сосуд с водой, плоская коробочка, затянутая резиновой мембраной, и пластиковая трубочка, соединяющая эту коробочку с коленом манометра. Если поместить коробочку в сосуд с водой, то столб жидкости будет оказывать г давление на мембрану, что приведёт к сжатию воздуха, находящегося в коробочке и соединительной трубке.

  • В соответствии с законом Паскаля это избыточное давление будет передаваться на поверхность жидкости в колене манометра.
  • В результате уровень жидкости в колене, соединённом с коробочкой, понизится, а в другом колене повысится.
  • По разности высот столбов жидкости в манометре можно судить о том, насколько давление на мембрану отличается от атмосферного.

С помощью металлического манометра измеряют давления сжатого воздуха и других газов. Его основной частью является полая металлическая трубка, изогнутая в виде кольца, один конец которой запаян, а другой соединён с сосудом, в котором нужно измерить давление.

  1. При увеличении давления трубка разгибается и приводит в движение стрелку манометра.
  2. При уменьшении давления трубка благодаря своей упругости возвращается в прежнее положение, а стрелка — к нулевому делению шкалы.
  3. Манометры, называемые тонометрами, используют врачи при измерении давления крови.
  4. Вот как это делается.

На руку пациенту надевают полую резиновую манжету, и с помощью насоса врач накачивает в неё воздух. Когда давление сжатого воздуха в манжете становится равным давлению крови, манжета пережимает артерию и пульс у пациента пропадает. В это время врач снимает показания манометра.

Чем можно измерить давление?

Уровень артериального давления – один из ярких показателей состояния здоровья. Правда, чаще всего о необходимости следить за АД вспоминают при заболеваниях сердечно-сосудистой системы. На самом деле каждый должен знать все о своем давлении, потому что оно меняется по разным причинам.

  1. Что такое артериальное давление? Артериальное давление (АД) – давление, которое оказывает кровь на стенки артерий.
  2. Оно неравномерно и колеблется в зависимости от фазы работы сердца.
  3. В систолу, когда сердце сокращается и выбрасывает в сосуды очередную порцию крови, давление увеличивается.
  4. А в диастолу, когда сердце расслабляется и наполняется кровью, давление в артериях уменьшается.
Читайте также:  Что Означает Давление 140 На 95?

Давление крови на стенки артерий в систолу называют «верхним» или систолическим, а в диастолу – «нижним» или диастолическим. Значение АД принято записывать через дробь: первым – верхнее, вторым – нижнее. АД – один из важнейших показателей работы сердечно-сосудистой системы.

У большинства здоровых людей он относительно постоянен. Но под воздействием стрессов, физических нагрузок, переутомления, употребления большого количества жидкости и под влиянием других факторов его величина может меняться. Обычно подобные изменения либо не слишком часты, либо не слишком сильны, и в течение суток не превышают 20 мм.

рт. ст. – для систолического, 10 мм. рт. ст. – для диастолического. А, вот, неоднократное или стойкое снижение или повышение давления, выходящее за пределы нормы, может оказаться тревожным сигналом болезни и требует незамедлительного обращения к врачу. Нормы артериального давления по классификации ВОЗ

Артериальное давление (категория) Верхнее артериальное давление (мм. рт. ст.) Нижнее артериальное давление (мм. рт. ст.)
Гипотония (пониженное) ниже 100 ниже 60
Оптимальное давление 100–119 60–79
Нормальное давление 120–129 80–84
Высокое нормальное давление 130–139 85–89
Умеренная гипертония (повышенное) 140–159 90–99
Гипертония средней тяжести 160–179 100–109
Тяжелая гипертония более 180 более 110

Идеальным считается «давление космонавтов» – 120/80 мм. рт. ст. Впрочем, многие доктора сходятся в том, что у каждого идеал свой, и поэтому нередко спрашивают о «рабочем» давлении пациента. Рабочее АД – привычный постоянный интервал АД, обеспечивающий человеку хорошее самочувствие.

Поскольку этот интервал индивидуален, для кого-то 115/80 при рабочем 130/90 может оказаться пониженным, хотя и укладывается в границы нормы. И, наоборот, при рабочем 110/80 повышенным может стать уже 130/90. Знание рабочего давления помогает врачу своевременно выявить патологию, более точно поставить диагноз и правильно подобрать лечение.

Тем не менее, стоит помнить, что давление, выходящее за нижние и верхние границы нормы, рабочим для здорового человека не бывает. И нормальное самочувствие в таком случае – только дополнительный повод обратиться за консультацией к специалисту. Кому и как необходимо следить за уровнем артериального давления? Одно из самых распространенных нарушений регуляции АД – гипертония,

  • Нередко за ней кроется гипертоническая болезнь, приводящая к инфаркту миокарда, инсульту и другим тяжелым осложнениям.
  • К сожалению, часто артериальная гипертензия протекает бессимптомно, поэтому следить за давлением необходимо всем.
  • Людям, склонным к его повышению, подверженным факторам риска развития гипертонической болезни и испытывающим ее симптомы, стоит быть особенно внимательными и время от времени измерять АД.

Остальным же вполне достаточно ежегодного контроля в период диспансеризации. А вот тем, у кого диагноз артериальной гипертензии подтвержден, хорошо бы подружится с тонометром и проверять уровень давления как минимум два раза в день – утром и вечером. Обязательно измерять АД при появлении слабости, головокружения, головной боли, потемнения, «пелены» в глазах, шума в ушах, затруднении дыхания, боли и тяжести в области сердца или за грудиной или при появлении других симптомов, которые обычно сопровождают подъем или понижение давления.

Также стоит контролировать АД при физических упражнениях, особенно при подборе нагрузки. Как правильно измерять артериальное давление? Если измерение АД плановое, то за час до него нельзя употреблять алкоголь, напитки, содержащие кофеин (чай, колу, кофе) и курить, а за пять минут до измерения обеспечить себе состояние покоя.

При первом визите к врачу давление измеряют на обеих руках поочередно. Если результаты отличаются более, чем на 10 мм. рт. ст., то в последующем измерение проводится на руке с большим значением АД. Впрочем, в норме показания примерно одинаковы. Разница же между ними, превышающая 10 мм.

рт. ст., говорит о повышенном риске заболеваний сердечно-сосудистой системы и смерти от них или об уже имеющейся патологии. АД принято измерять сидя или лежа. Рука, на которой проводится измерение, должна быть освобождена от одежды и сдавливающих предметов, расслаблена и неподвижна. Чтобы избежать нежелательного напряжения, ее можно положить на предмет, обеспечивающий точку опоры, например, на стол или край кровати.

Лучше всего расположить конечность так, чтобы локтевой сгиб находился на уровне сердца. На руке не должно быть артериовенозных фистул для проведения диализа, следов разреза плечевой артерии, лимфедемы. Манжету накладывают на плечо на 2 см выше локтевого сгиба.

  1. Важно, чтобы она плотно облегала руку, но не сдавливала ее.
  2. В идеале АД измеряют дважды с интервалом в 2 минуты.
  3. Если результат отличается более, чем на 5 мм. рт. ст.
  4. Через 2 минуты проводят третье измерение и высчитывают среднее значение.
  5. Способ измерения давления зависит от прибора, которым оно проводится, и указывается в инструкции по эксплуатации.

Как выбрать аппарат для измерения давления? Прибор для измерения давления называется тонометр. Различают два типа тонометров – механический и электронный (автоматический и полуавтоматический). Механический тонометр недорог, надежен, служит долго, гарантирует высокую точность измерения, несложен в применении, однако требует определенных навыков и им труднее пользоваться без посторонней помощи.

Электронный тонометр удобен и прост, с ним легко можно справиться самостоятельно. Помимо аппаратов, измеряющих давление на плече, есть и те, что измеряют его на запястье. Такой тонометр можно носить с собой, что иногда бывает важно для некоторых гипертоников. А приборы с крупным циферблатом приходятся весьма кстати для пожилых людей.

Многие из электронных тонометров показывают пульс, запоминают данные последних измерений и снабжены некоторыми другими функциями, количество и качество которых во многом зависит от цены прибора. Но автоматические и полуавтоматические аппараты дороже механических, менее точны и могут прослужить несколько меньше.

  1. К тому же, при некоторых заболеваниях АД очень сложно измерить электронным тонометром, например, при мерцательной аритмии.
  2. Приобретая тонометр, обязательно надо обратить внимание на наличие инструкции на русском языке, паспорта прибора, гарантийного талона и отсутствие видимых дефектов.
  3. А при покупке электронного аппарата – еще и на страну-производитель.

Лучшими традиционно считаются японские и немецкие приборы. Если выбор пал на механический тонометр – стоит помнить, что к нему нужен фонендоскоп. Он часто не входит в комплект. Приборы для измерения давления лучше всего покупать в аптеке или специализированном магазине.

Если аппарат приобретается с рук, точность измерения и срок его службы гарантировать невозможно. Ширина манжеты в среднем должна составлять 13–17 см, для детей – чуть меньше, для полных людей – чуть больше. Перед использованием тонометр следует проверить и, при необходимости, настроить. Проще и правильнее это сделать с помощью врача.

Как измерить АД механическим тонометром? Самостоятельно измерить давление механическим тонометром под силу не всем, поэтому желательна помощь другого человека. Помимо тонометра, для измерения понадобится фонендоскоп. Фонендоскоп — прибор для выслушивания звуков, сопровождающих работу внутренних органов.

На плечо, на 2 см выше локтевого сгиба, накладывается манжета. Определяется пульс на лучевой артерии у запястья. В манжету быстро нагнетается воздух. После исчезновения пульса, манжета докачивается еще на 30–40 мм рт. ст. По нижнему краю манжеты в локтевой сгиб, немного внутрь от центра локтевой ямки, ставится головка фонендоскопа. Воздух из манжеты медленно выпускается – со скоростью 2-3 мм рт. ст. в 1 с. При этом шкала прибора постоянно находится под контролем. Значение шкалы, при котором появляется первый звук – считают величиной систолического давления, а значение, при котором он исчезает – величиной диастолического. Когда удары пульсовой волны становятся не слышны, воздух из манжеты стремительно выпускают.

Измерение АД электронным тонометром для конкретного аппарата может иметь свои тонкости и подробно описано в инструкции по эксплуатации.

Как называется прибор для измерения давления жидкости и газа?

1.3. Классификация приборов измерения давления и их основные технические характеристики

  • Книга МАНОМЕТРЫ
  • Приборы для измерения давления могут классифицироваться по следующим характеристикам:
  • · виду измеряемого давления;
  • · принципу действия;
  • · назначению;
  • · классу точности.
  • По виду измеряемого давления приборы подразделяются на следующие:
  • · манометры;
  • · вакуумметры;
  • · мановакуумметры;
  • · напоромеры;
  • · тягомеры;
  • · тягонапоромеры;
  • · дифманометры;
  • · микроманометры;
  • · барометры.

Согласно ГОСТ 8.271-77 манометр – это измерительный прибор или измерительная установка для измерения давления или разности давлений. Для измерения абсолютного давления, т.е. которое считывается от абсолютного нуля выпускаются манометры абсолютного давления; избыточного – манометры избыточного давления, и наиболее часто «по умолчанию» эти разновидности приборов называют манометрами,

Большинство выпускаемых манометров применяются для измерения избыточного давления. и х отличительным признаком является показание «нуля» прибора при воздействии на чувствительный элемент атмосферного давления. Измерение давления разряженного газа производят вакуумметрами, Соответственно вакуумметр – это манометр для измерения давления разряженного газа/10/.

Манометр, имеющий возможность измерять давление разряженного газа и избыточное давление (у прибора единая шкала), называют мановакуумметрами, Измерение малых значений (до 40 кПа) избыточного давления производится напоромерами, хотя такое название, как и такое подразделение по виду измеряемого давления (для малых значений) за рубежом отсутствует.

  1. Тягомеры используются для измерения малого (до –40 кПа) вакуумметрического давления.
  2. Приборы, имеющие часть шкалы вакуумметрического, а часть избыточного давления в пределах ±20 кПа, называются тягонапоромерами,
  3. Европейские стандарты ( EN 837-1, EN 837-2 и EN 837-3/7,9/) такое разделение производят по виду чувствительного элемента – трубчатый ( Bourdon tube — Rohrfedern ) и мембранный – мембранная коробка – капсула ( Diaphragm – Plattenfeder или Capsule — Kapselfeder ).

Приборы, предназначенные для измерения разности давлений в двух произвольных точках, именуют дифференциальными манометрами (дифманометрами). Причем это название в большей степени применимо для показывающих приборов. Устройства измерения дифференциального давления с унифицированным выходным сигналом называют измерительным преобразователем разности давлений/11/.

  1. Дифманометр, функционально обеспечивающий измерение малых значений разности двух давлений, и имеющий верхний предел измерения не более 40 кПа (4000 кгс/м 2 ) называют микроманометром,
  2. Контроль и измерение атмосферного давления производят барометрами,
  3. В дальнейшем для упрощения изложения материала в непринципиальных моментах манометры, вакуумметры, мановакуумметры, напоромеры, тягомеры, тягонапоромеры объединены под названием манометры или манометрические приборы,
  4. По принципу действия основную группу приборов для измерения давления можно подразделить на следующие:
  5. · жидкостные;
  6. · деформационные (пружинные);
  7. · грузопоршневые;
  8. · электрические и др.
  9. К жидкостному относится манометр, принцип действия которого основан на уравновешивании измеряемого давления или разности давлений, давлением столба жидкости/10/.
  10. К жидкостным относится U -образный манометр, состоящий из сообщающихся сосудов, в которых измеряемое давление определяют по одному или нескольким уровням жидкости.
  11. В деформационном манометре от измеряемого давления зависит степень деформации чувствительного элемента или развиваемой им силы.
  12. В состав деформационных входит трубчато-пружинный манометр, в котором чувствительным элементом является трубчатая пружина; сильфонный, функционирующий на основе сильфона, мембранный — на основе мембраны или мембранной коробки.
  13. К деформационным отнесен манометр с вялой мембраной, в котором измеряемое давление воспринимается вялой мембраной и преобразуется в силу, уравновешиваемую дополнительным устройством.
  14. В грузопоршневых приборах, имеющих, в большинстве случаев, в качестве рабочего тела жидкость и зачастую называемых жидкостными, измеряемое давление уравновешивается давлением, создаваемым весом поршня с грузоприемным устройством, и грузов с учетом сил жидкостного трения.
  15. Электрические манометры функционируют по принципу зависимости одного из электрических параметров чувствительного элемента первичного преобразователя от давления.
  16. По назначению, установившемуся в среде производственников, манометры подразделяются на следующие:
  17. · общепромышленные, имеющие также название технических или рабочих;
  18. · эталонные, включающие государственный первичный, рабочие и другие эталоны.
  19. Общетехнические манометры предназначены для измерения давления непосредственно в ходе производственных процессов в рабочих точках промышленного оборудования.
  20. Эталонные приборы используют для хранения и передачи размера единиц давления в целях единообразия, достоверности и обеспечения высокой точности его измерений.

В целях упорядочения отечественной метрологической терминологии и приближения ее к международной в нашей стране термин образцовое средство измерений заменен на термин рабочий эталон/6/. Рабочие эталоны подразделяют на разряды (1-й, 2-й, 3-й), как это было принято для образцовых средств (см.

Гл.7). В промышленности встречаются контрольные манометры, которые применяются для контроля правильности показаний технических манометров на месте их установки. Термин «контрольные» специфичен для промышленных условий и не имеет места в законодательной метрологии настоящего времени, но широко использовался ранее.

Вместо него сейчас используют термин «манометры повышенной точности». По защищенности от воздействия окружающей среды приборы, согласно ГОСТ 12997-84/12/, подразделяют на следующие исполнения: обыкновенное; защищенное от попадания внутрь изделия твердых тел (пыли), защищенные от попадания внутрь изделия воды; защищенные от агрессивной среды; взрывозащищенные, защищенные от других внешних воздействий.

Группа испол-нения Диапазон температуры окружающего воздуха, о С
  • Верхнее значение
  • относительной
  • влажности, %
  1. Место размещения
  2. или
  3. эксплуатации
Нижнее значение Верхнее значение
В1 +10 +35 75 при 30 о С и более низких температурах без конденсации влаги Обогреваемые и (или) охлаждаемые помещения без непосредственного воздействия солнечных лучей, осадков, ветра, песка и пыли, отсутствие или незначительное воздействие конденсации
В2 +5 +40
В3 +5 +40 90 при 30 о С и более низких температурах, без конденсации влаги
В4 +5 +40 80 при 30 о С и более низких температурах, без конденсации влаги
С1 -25 +55 100 при 30 о С и более низких температурах, с конденсацией влаги Помещения с нерегулируемыми климатическими условиями и (или) навесы. Изделия могут быть влажными в результате конденсации, вызванной резкими изменениями температуры или в результате воздействия заносимых ветров осадков и капающей воды
С2 -40 +70
С3 -10 +50 95 при 35 о С и более низких температурах, без конденсации влаги
С4 -30 +50
D 1 -25 +70 100 при 40 о С и более низких температурах c конденсацией влаги Открытое пространство. Изделия подвергаются воздействию атмосферных осадков (непосредственный нагрев солнечными лучам, ветер, дождь, снег, град, обледенение). Могут появляться резкие изменения температуры, изделия могут быть влажными в результате конденсации, воздействия осадков, брызг, утечек
D 2 -50
  • +85,
  • 100,
  • 125,
  • 155,
  • 200
D 3
  1. -50,
  2. -60,
  3. -65
+50 95 при 35 о С и более низких температурах, без конденсации влаги

Приборы должны быть устойчивыми и (или) прочными к воздействию синусоидальных вибраций высокой частоты с параметрами, по группе исполнения выбираемых из табл.1.3.

  • Таблица 1.3
  • Группы исполнения по устойчивости
  • к воздействию синусоидальных вибраций/12/
Группа испол-нения Частота, Гц Амплитуда Размещение
смещения для частоты ниже частоты перехода**, мм ускоре-ния для частоты выше частоты перехо- да,м/с 2
  1. L 1
  2. L 2
  3. LX
  4. ( L 3)*
5-35 0,35 Места, защищенные от существенных вибраций. Могут появляться вибрации только низкой частоты
0,75
(5-25)* (0,1)*
  • N1
  • N2
  • NX
  • (N3)*
  • (N4)*
10-55 0,15 Места, подтвержденные вибрации от работающих механизмов. Типовое размещение на промышленных объектах
0,35
(5-80)* (0,075)* (9,8)*
(0,15)* (19,6)*
  1. V 1
  2. V 2
  3. V 3
  4. VX
  5. (V4)*
  6. (V5)*
10-150 0,075 9,8 Места на промышленных объектах при условии, что существует вибрация с частотой, превышающей 55 Гц
0,15 19,6
0,35 49,0
(5-120)* (0,15)* (19,6)*
(0,20)* (29,4)*
  • F1
  • F2
  • F3
  • FX
10-500 0,075 9,8 Места, расположенные вблизи помещений, в которых установлены работающие авиационные двигатели
0,15 19,6
0,35 49,0
  1. G1
  2. G2
  3. GX
  4. G3*
10-2000 0,35 49,0 Места, расположенные вблизи помещений, в которых установлены работающие авиационные двигатели
0,75 98,0
5000* 3,5* 490,0*

ul>

  • * По требованию потребителя
  • ** Частота перехода – 57-62 Гц.
  • Общетехнические манометры конструктивно предусматривают устойчивость к вибрациям с частотой 1055 Гц и амплитудой смещения до 0,15 мм.
  • Система кодификации по защите приборов от попадания внутрь изделия твердых тел (пыли), а также воды устанавливается ГОСТ 14254-96/13/. Для такой кодификации применяется обозначение « IP ». Обозначение « IP » ( International Protection – Международная защита) принято Международной Электрической Комиссией (МЭК) в качестве стандарта защиты изделий (МЭК 529–89).

    1. Пер-
    2. вая
    3. харак-терис-тичес-
    4. кая
    5. цифра
    Степень защиты
    Краткое описание Определение
    0 Нет защиты
    1 Защищено от внешних твердых предметов диаметром больше или равным 50 мм Щуп-предмет – сфера диаметром 50 мм – не должен проникать полностью*
    2 Защищено от внешних твердых предметов диаметром больше или равным 12,5 мм Щуп-предмет – сфера диаметром 12,5 мм – не должен проникать полностью*
    3 Защищено от внешних твердых предметов диаметром больше или равным 2,5 мм Щуп-предмет – сфера диаметром 2,5 мм – не должен проникать ни полностью, ни частично*
    4 Защищено от внешних твердых предметов диаметром больше или равным 1,0 мм Щуп-предмет – сфера диаметром 1,0 мм – не должен проникать ни полностью, ни частично*
    5 Пылезащищено Проникновение пыли исключено не полностью, однако пыль не должна проникать в количестве, достаточном для нарушения нормальной работы оборудования или снижения его безопасности
    6 Пыленепроницаемо Пыль не проникает в оболочку
    Читайте также:  Какая Организация Осуществляет Федерального Органа Исполнительной Власти В Сфере Стандартизации Рф?

    Наибольший диаметр щупа-предмета не должен проходить через отверстие в оболочке. Вторая характеристическая цифра обозначает степень защиты, обеспечиваемую корпусом прибора в отношении вредного воздействия на работу измерителя в результате проникновения воды.

    • Пер-
    • вая
    • харак-терис-тичес-
    • кая
    • цифра
    Степень защиты
    Краткое описание Определение
    0 Нет защиты
    1 Защищено от вертикально падающих капель воды Вертикально падающие капли воды не должны оказывать вредного воздействия
    2 Защищено от вертикально падающих капель воды, когда оболочка отклонена на угол до 15 о Вертикально падающие капли воды не должны оказывать вредного воздействия, когда оболочка отклонена от вертикали на угол до 15 о включительно
    3 Защищено от воды, падающей в виде дождя Вода, падающая в виде брызг в любом направлении, составляющем угол до 60 о включительно с вертикалью, не должна оказывать вредного воздействия
    4 Защищено от сплошного обрызгивания Вода, падающая в виде брызг на оболочку с любого направления, не должна оказывать вредного воздействия
    5 Защищено от водяных струй Вода, направляемая на оболочку в виде струй с любого направления, не должна оказывать вредного воздействия
    6 Защищено от сильных водяных струй Вода, направляемая на оболочку в виде сильных струй с любого направления, не должна оказывать вредного воздействия
    7 Защищено от воздействия при временном (непродолжительном) погружении в воду Должно быть исключено проникновение воды внутрь оболочки в количестве, вызывающем вредное воздействие, при ее погружении на короткое время при стандартизованных условиях по давлению и длительности
    8 Защищено от воздействия при длительном погружении в воду Должно быть исключено проникновение воды в оболочку в количествах, вызывающих вредное воздействие, при ее длительном погружении в воду при условиях, согласованных между изготовителем и потребителем, однако более жестких, чем условия для цифры 7.

    Перечисленные в табл.1.4 и табл.1.5 степени защиты следует нормировать, как указывает ГОСТ 14254-96/13/, только с использованием характеристических чисел, а не с помощью краткого описания или определения. Так, например, некоторые общетехнические показывающие манометры имеют степень защиты IP 40, что указывает на невозможность попадания в условиях эксплуатации внутрь корпуса механических частиц диаметром более 1 мм.

    Но корпус прибора не имеет защиты от воздействия воды. Европейские нормы, как и ГОСТ 14254–96, базируются на едином положении МЭК 529-89, что обеспечивает идентичность маркировки по IP как у нас в стране, так и за рубежом. Диапазон показаний манометрических приборов должен выбираться из ряда, приведенного в табл.1.6 (ГОСТ 2405–88/4/), и в технических условиях (ТУ) на прибор конкретного типа.

    Этим ГОСТом допускается по заказу потребителя изготавливать приборы с диапазоном показаний, отличным от указанных в табл.1.6.

    1. Таблица 1.6
    2. Пределы измерения для
    3. манометрических приборов согласно ГОСТ 2405-88/4/
    Диапазон показаний (записи) давления
    избыточного избыточного и вакуумметрического вакуумметрического
    В единицах Па (кгс/м 2 )
    • От 0 до 160 (от 0 до 16)
    • » 0 » 250 (» 0 » 25)
    • » 0 » 400 (» 0 » 40)
    • » 0 » 600 (» 0 » 60)
    • » 0 » 250 (» 0 » 25)
    1. От -60 до 100 (от –6 до 10)
    2. » -80 » 80 (» -8 » 8)
    3. » -100 » 150 (» -10 » 15)
    4. » -125 » 125 (» -12,5 » 12,5)
    5. » -150 » 250 (» -15 » 25)
    6. » -200 » 200 (» -20 » 20)
    7. » -300 » 300 (» -30 » 30)
    • От -160 до 0 (от -16 до 0)
    • » — 250 » 0 (» — 25 » 0 )
    • » -4 00 » 0 ( » — 40 » 0)
    • » — 600 » 0 ( » — 60 » 0)
    В единицах кПа (кгс/м 2 )
    1. От 0 до 1 (от 0 до 100)
    2. » 0 » 1,6 (» 0 » 160)
    3. » 0 » 2,5 (» 0 » 250)
    4. » 0 » 4 (» 0 » 400)
    5. » 0 » 6 (» 0 » 600)
    6. » 0 » 10 (» 0 » 1000)
    7. » 0 » 16 (» 0 » 1600)
    8. » 0 » 25 (» 0 » 2500)
    9. » 0 » 40 (» 0 » 4000)
    • От –0,4 до 0,6(от -40 до60)
    • » -0,5 » 0,5 (» -50 » 50)
    • » -0,6 » 0,4 (» -60 » 40)
    • » -0,6 » 1 (» -50 » 50)
    • » -1 » 0,6 (» -100 » 60)
    • » -1 » 1,5 (» -100 » 150)
    • »-1,25 » 1,25 (» -125 » 125)
    • »-1,5 » 1 (» -150 » 100)
    • »-1,5 » 2,5 (» -150 » 250)
    • » -2 » 2 (» -200 » 200)
    • » -2 » 4 (» -200 » 400)
    • » -2,5 » 1,5 (» -250 » 150)
    • » -3 » 3 (» -300 » 300)
    • » -4 » 2 (» -400 » 200)
    • » -4 » 6 (» -400 » 600)
    • » -5 » 5 (» -500 » 500)
    • » -6 » 4 (» -600 » 400)
    • » -6 » 10 (» -600 » 1000)
    • » -8 » 8 (» -800 » 800)
    • » -10 » 6 (» -1000 » 600)
    • »-12,5»12,5(»-1250 » 1250)
    • »-15 » 10 (»-1500 » 1000)
    • » -20 » 20 (»-2000 » 2000)
    1. » -1 » 0 (» -100 » 0)
    2. »-1,6 » 0(» -160 » 0)
    3. »-2,5 » 0 (» -250 » 0)
    4. » -4 » 0 (» -400 » 0)
    5. » -6 » 0 (» -600 » 0)
    6. » -10 » 0 (» -1000 » 0)
    7. »-16 » 0(» -1600 » 0)
    8. »-25 » 0 (» -2500 » 0)
    9. » -40 » 0 (» -4000 » 0)
    В единицах кПа (кгс/ c м 2 )
    • От 0 до 60 (от 0 до 0,6)
    • » 0 » 100 (» 0 » 1)
    • » 20 » 100 (» 0,2 » 1)
    • » 0 » 160 (» 0 » 1,6)
    • » 0 » 200 (» 0 » 2)
    • » 0 » 250 (» 0 » 2,5)
    • » 0 » 400 (» 0 » 4)
    • » 0 » 600 (» 0 » 6)
    • » 0 » 40 (» 0 » 4000)
    1. От -20 до 40(от –0,2 до 0,4)
    2. » -25 » 15 (» -0,25 » 0,15)
    3. » -40 » 60 (» -0,4 » 0,6)
    4. » -100 » 60 (» -1 » 0,6)
    5. » -100 » 150 (» -1 » 1,5)
    6. » -100 » 300 (» -1 » 3)
    7. » -100 » 500 (» -1 » 5)
    От -60 до 0(от –0,6 до 0) » -100 » 0 (» -1 » 0)
    В единицах МПа (кгс/ c м 2 )
    • От 0 до 1 (от 0 до 10)
    • » 0 » 1,6 (» 0 » 16)
    • » 0 » 2,5 (» 0 » 25)
    • » 0 » 4 (» 0 » 40)
    • » 0 » 6 (» 0 » 60)
    • » 0 » 10 (» 0 » 100)
    • » 0 » 16 (» 0 » 160)
    • » 0 » 25 (» 0 » 250)
    • » 0 » 40 (» 0 » 400)
    • » 0 » 60 (» 0 » 600)
    • » 0 » 100 (» 0 » 1000)
    • » 0 » 160 (» 0 » 1600)
    • » 0 » 250 (» 0 » 2500)
    • » 0 » 400 (» 0 » 4000)
    • » 0 » 600 (» 0 » 6000)
    • » 0 » 1000 (» 0 » 10000)
    1. От –0,1 до 0,9 (от -1 до 9)
    2. » -0,1 » 1,5 (» -1 » 15)
    3. » -0,1 » 2,4 (» -1 » 24)
    4. » -0,1 » 4 (» -1 » 40)
    5. » -0,1 » 6 (» -1 » 60)

    По заказу потребителя допускается изготовлять манометры с верхними пределами измерений 40; 60; 100; 160; 250; 400; 600 м вод. ст. и 1,2 МПа (12 кгс/ c м 2 ).

    • Таблица 1.7
    • Пределы измерения
    • манометрических приборов согласно EN 837-1, EN 837-3/7,9/
    • Диапазоны измерений для положительных давлений в мбар:
    • От 0 до 1 от 0 до 10 от 0 до 100
    • От 0 до 1,6 от 0 до 16 от 0 до 160
    • От 0 до 2,5 от 0 до 25 от 0 до 250
    • От 0 до 4 от 0 до 40 от 0 до 400
    • От 0 до 6 от 0 до 60 от 0 до 600
    • Диапазоны измерений для вакуумметрических давлений в мбар:
    • От -1 до 0 от -10 до 0 от -100 до 0
    • От -1,6 до 0 от -16 до 0 от -160 до 0
    • От -2,5 до 0 от –25 до 0 от -250 до 0
    • От -4 до 0 от -40 до 0 от -400 до 0
    • От -6 до 0 от -60 до 0 от -600 до 0
    • Диапазоны измерений для положительных давлений в бар:
    • от 0 до 0,6 от 0 до 10 от 0 до 160
    • от 0 до 1 от 0 до 16 от 0 до 250
    • от 0 до 1,6 от 0 до 25 от 0 до 400
    • от 0 до 2,5 от 0 до 40 от 0 до 600
    • от 0 до 4 от 0 до 60 от 0 до 1000
    • от 0 до 6 от 0 до 100 от 0 до 1600
    • Диапазоны измерений для вакуумметрических давлений в бар:
    • от -0,6 до 0 от –1 до 0
    • Диапазоны измерений для положительных и вакуумметрических давлений в бар:
    • от –1 до +0,6 от –1 до +9
    • от –1 до +1,5 от –1 до +15
    • от –1 до +3 от –1 до +24
    • от –1 до +5
    • Европейская норма EN 837-3/9/ рекомендует при использовании единицы измерения Па в соответствующем диапазоне руководствоваться следующим положением:
    • — от 0 до 1001000 Па – использовать Па;
    • — от 0 до 1,61000 кПа – кПа;
    • — от 0 до 1,62,5 МПа – МПа.
    • Рабочие диапазоны измерений избыточного давления отечественных манометрических приборов должен быть от 0 до 100 % или от 25 до 75 % диапазона показаний.
    • ГОСТ 2405-88/4/ регламентирует диапазон уставок приборов с сигнализирующим устройством:
    • от 5 до 95% диапазона показаний – для диапазона измерений от 0 до 100%;
    • от 25 до 75% диапазона показаний – для диапазона измерений от 25 до 75%.
    • Некоторые зарубежные производители пружинных манометров предусматривают использование манометрических приборов для пределов от 0 до 75 % диапазона показаний, и соответственно производят регулировку только на этом участке, чем обусловливается не вхождение этих приборов в класс точности на заключительном участке шкалы.
    • Отечественные производители обязаны обеспечивать выпуск приборов с соблюдением заявленного класса точности на всех обозначенных на циферблате прибора цифровых значениях.

    Кроме того, поверку прибора отечественными метрологическими службами производят по восьми значениям давления классов точности 0,4 и 0,6 и не менее чем на пяти точках шкалы классов точности 1,0; 1,5; 2,5 и 4,0. Практически такие же требования предъявляются немецким стандартом.

    • Метрологические службы некоторых предприятий зарубежных стран, как наблюдал автор, устанавливают для общетехнических манометров поверку по трем значениям давления, что сказывается на точности измерения.
    • Европейские нормы /7,9/ устанавливают соответствие заявленному классу точности диапазон шкалы прибора от 10 до 100 % для измерителей, на циферблате которых установлен упор и от 0 до 100 % для устройств с циферблатами без упора.

    Для выпускаемых отечественными предприятиями манометров выбирают значения классов точности из ряда: 0,4; 0,6; 1,0; 1,5; 2,5; 4,0/4/. Манометрические приборы с классами точности 0,4 и 4,0 изготавливаются по заказу потребителя. Согласно рекомендациям по межгосударственной стандартизации РМГ 29-99/6/, класс точности – это обобщенная характеристика данного типа средств измерений, как правило, отражающая уровень их точности, выражаемая пределами допускаемых основной и дополнительных погрешностей, а также другими характеристиками, влияющими на точность.

    • В большинстве случаев класс точности к принимается равным отношению абсолютной погрешности средства измерения D к нормирующему значению (верхнему пределу измерения S ), выраженному в процентах: к = D / S × 100 %.
    • 1.6) ГОСТ 2405–88/4/ регламентирует для значений класса точности соответствующие пределы основной допускаемой погрешности (см.

    табл.1.8), определяемой в процентах для манометров и вакуумметров от верхнего предела измерений и для мановакуумметров в процентах от абсолютного значения всего диапазона измерений. Таблица 1.8 Значения принятых классов точности/4/

    Класс точности Предел допускаемой основной погрешности, %
    0,4* ± 0,4
    0,6 ± 0,6
    1,0 ± 1
    1,5 ± 1,5
    2,5 ± 2,5
    4,0* ± 4

    Применяется по индивидуальному заказу потребителя. Европейские стандарты в большинстве случаев идентичны ГОСТ. EN 837-1 и EN 837-3 /7,9/ устанавливают для манометрических приборов следующие классы точности: 0,6; 1,0; 1,6; 2,5 и 4,0. Во всех производимых показывающих манометрических приборах диаметр корпуса должен соответствовать классу точности.

    1. ГОСТ 2405–88/4/ устанавливает для них соотношения, приведенные в табл.1.9.
    2. Допускаются отклонения от приведенных в таблице значений, но они должны отражаться в технических условиях на прибор.
    3. Например, на одном из отечественных заводов готовятся к производству образцовые показывающие манометры с классом точности 0,4 и даже 0,25 в корпусе диаметром 160 мм, что отражается в соответствующей документации.

    Таблица 1.9 Соответствие диаметра корпуса и класса точности согласно ГОСТ 2405-88/4/

    Диаметр корпуса, мм Класс точности прибора к
    0,4 0,6 1,0 1,5 2,5 4,0
    40, 50 + +
    63 + + +
    100 + + +
    160 + + + +
    250 + + + +

    Импортные приборы, диаметр корпуса которых составляет 63 мм, могут иметь, как это показано в табл.1.7, класс точности 1,0, а манометры с диаметром корпуса 100 мм могут производиться с классом точности 0,6. В последние годы наметилось активное сотрудничество российских метрологических служб с европейскими метрологическими комитетами.

    1. Таблица 1.10
    2. Соответствие диаметра корпуса и класса точности согласно
    3. EN 837-1 и EN 837-3/7,9/
    Диаметр корпуса, мм Класс точности, к
    0,1 0,25 0,6 1 1,6 2,5 4
    40, 50 + + +
    63 + + + +
    80 + + + +
    100 + + + +
    150 и 160 + + + +
    250 + + + + +

    Предел основной погрешности, приведенной в табл.1.8, наблюдается только для приборов, эксплуатируемых при температуре окружающей среды 20 или 23 ° С. Конкретное значение температуры устанавливается в ТУ на прибор конкретного типа. Допустимое отклонение температуры определено следующими значениями:

    • ±2 ° С – для приборов классов точности 0,4; 0,6 и 1,0;
    • ±5 ° С – для приборов классов точности 1,5; 2,5 и 4,0.
    • При варьировании температуры выше относительно установленного предела изменение показаний манометрического прибора D может быть определено по формуле
    • D = ± K t t D, (1.7)
    • где K t – температурный коэффициент, численные значения которого определены ГОСТ 2405-88/4/ и должны составлять значение не более 0,06 %/ ° С для приборов классов 0,4; 0,6; 1; 1,5 и не более 0,1%/ ° С для приборов классов точности 2,5 и 4,0; t D – абсолютное значение разности температур,

    t D = | t 2 – t 1 |. (1.8)

    1. Здесь t 1 – требуемая температура окружающей среды (23 о С); t 2 – действительное значение температуры, которое ограничено значениями от –50 до +60 ° С.
    2. Значения коэффициентов K t для европейских производителей согласно EN 837-1 и EN 837-3/7,9/ в зависимости от чувствительного элемента определены как:
    3. — 0,04 %/ ° С для манометров на основе трубчатых элементов;
    4. — 0,06 %/ ° С для измерителей давления на основе мембранного блока ( capsule );
    5. — 0,08 %/ ° С для манометрических приборов, функционирующих на основе мембраны.

    Согласно (1.7), с учетом реальных температурных коэффициентов приборов погрешность проводимых измерений может быть существенной. Так, при измерении давления прибором класса точности 2,5 при температуре окружающей среды –40 о С для соблюдения заявленного класса точности измерителя необходимо вводить дополнительно поправку 6 %.

    • Температурный диапазон работы показывающих манометрических приборов, производимых отечественными предприятиями, определяется соответствующими ТУ на изделие и наиболее часто соответствует группе исполнения D3 и находится в пределах от –50 до +50 о С.
    • Импортные манометры, как правило, рекомендованы к эксплуатации, согласно данных /7-9/, при температурах от –20 до +60 ° С.
    • По устойчивости к воздействию температуры и влажности окружающего воздуха и атмосферного давления показывающие манометрические приборы, как это отмечено выше, должны соответствовать одной из групп исполнения по ГОСТ 12997-84/12/.
    Читайте также:  Сколько Будет 50 Литров В Килограммах?

    Для других температурных условий производятся специальные измерители давления. Так, для условий повышенных температурных воздействий окружающей среды некоторые фирмы выпускают показывающие манометры, которые могут эксплуатироваться при температурах до 200 ° С.

    1. Однако их применение осложнено необходимостью поверки на специальном метрологическом оборудовании, когда испытания производятся одновременно как по измеряемому давлению, так и температурному внешнему воздействию.
    2. Существенное различие манометрических измерительных приборов отечественных и зарубежных производителей заключается в размерах и типе присоединительного штуцера.

    На отечественных заводах изготавливают измерители с метрической присоединительной резьбой, в то время как зарубежные, как это изложено в п.2.2.2, наиболее часто применяют с дюймовые (трубные) типы присоединения (табл.1.11). Таблица 1.11 Размеры присоединительных резьб

    Производители
    Отечественные Зарубежные
    М10 х 1 – 6 g ; М12 х 1,5 – 8 g ; М16 х 1,5 – 8 g ; М20 х 1,5 – 8 g G 1/8 В; G 1/4В; G 1/2В; G 3/8В;

    Манометры и мановакуумметры отечественного производства должны выдерживать, согласно ГОСТ 2405–88/4/, кратковременное перегрузочное давление (табл.1.12). Таблица 1.12 Допустимые пределы перегрузки манометрических приборов

    Верхний предел измерений, МПа Перегрузка к верхнему пределу измерений избыточного давления, %
    До 10 вкл. 25
    Св.10 до 60 вкл. 15
    Св.60 до 160 вкл. 10
    Св.160 до1000 вкл. 5

    ol>

  • Зарубежные манометрические приборы должны также выдерживать согласно европейских норм /7,9/ в основном такие же предельные давления.
  • На циферблате показывающего или самопишущего прибора, кроме разметки шкалы, должны быть нанесены/4/:
  • · единицу измерений;
  • · знак «-» (минус) перед числом, обозначающим верхний предел измерений вакуумметрического давления;
  • класс точности;
  • · условное обозначение рабочего положения прибора, если оно отличается от нормального;
  • наименование или условное обозначение измеряемой среды – при специальном исполнении прибора.
  • Кроме этого, на циферблат манометра рекомендуется наносить следующую информацию:
  • · условное обозначение прибора;
  • · знак Государственного реестра;
  • · товарный знак предприятия-изготовителя;
  • Немецкий стандарт, кроме отмеченных выше особенностей, регламентирует нанесение на циферблат прибора обозначения типа измерительного элемента.
  • Европейскими нормами /7,9/ определено также указание на циферблате материала частей измерительного прибора, которые контактируют с измеряемой средой и изготовлены не из латуни или бронзы, а также обязывает указание на циферблате товарного знака изготовителя и/или поставщика. Кроме этого, на циферблате прибора рекомендуется наносить номер нормы или стандарта, по которому произведен прибор.

    • Нумерация шкалы прибора для общетехнических приборов может производиться по заказу потребителя.
    • Отечественный стандарт требует указания передающего давление вещества (газ или жидкость) в случаях, когда такая замена приводит к погрешностям более 1/4 предельного значения.
    • Возможно нанесение ряда обозначений на корпус прибора или их указание в прилагаемом паспорте или техническом описании на измеритель, что следует согласовывать с соответствующим центром стандартизации.

    В табл.1.13 приведены дополнительные условные обозначения, разрешенные к нанесению на шкале приборов, предназначенных для измерения давления сред с определенными свойствами.

    1. Таблица 1.13
    2. Условные обозначения, наносимые на циферблаты
    3. специальных приборов/4/
    Предмет обозначения Наименование Форма условного обозначения
    Измеряемая среда Кислород Маслоопасно
    Ацетилен
    Газ Обозначение при градуировке или измерении среды
    Жидкость
    Водород
    Сероводород
    Аммиак
    Хладон n -числовое обозначение хладона
    Диапазон измерений избыточного давления Диапазон измерений равен диапазону показаний
    Рабочее положение прибора Рабочее положение с отклонением от вертикали (например 60 о ) Рабочее положение 90 о не обозначают
    Горизонтальное положение

    В зависимости от функционального назначения приборов допускается выделять отдельные элементы шкалы ярким цветом (зеленым, желтым, красным). При этом, как правило, желтым цветом выделяют выход измеряемого параметра из нормы, а красным цветом – его аварийное состояние /4/. Читать подробнее: 1.3. Классификация приборов измерения давления и их основные технические характеристики

    Для чего нужен манометр?

    Манометр – это профессиональное устройство, которое создано для того, чтобы была возможность точного измерения давления газа и жидкости. Манометры бывают самых различных видов, в частности, они бывают низкого давления и высокого.

    Как называется измеритель погоды?

    Описание основных метеоприборов для прогноза погоды: — Термометр — привычный прибор для измерения температуры воздуха и воды. Термометры бывают жидкостными, принцип измерения температуры по изменению объема жидкости, находящейся в корпусе. Механические термометры, где в зависимости от температуры меняется металлическая пружинка. Гигрометр — прибор для измерения влажности воздуха. Классический гигрометр основан на взаимодействии с обычного волоса с окружающей средой. В зависимости от влажности длина волоса меняется, он растягивается или сжимается, позволяя измерять влажность воздуха от 30% до 100%. Электронные гигрометры более удобные в быту, но значительно менее точные в измерениях. подробнее Барометр — прибор для измерения атмосферного давления. Существуют жидкостные барометры, основанные на свойствах изменения ртутного столба (часто используются на метеостанциях для более точного измерения атмосферного давления). В быту получили распространиение механические барометры, принцип измерения которого лежит в небольшой гофрированной коробочке из тонких металлических стенок, в которой создается разрежение за счет действия атмосферного давления. Анемометр — прибор для измерения силы и скорости ветра. Прибор внешне напоминающий флюгер состоит из двух чашечек, которые толкает ветер, приводя во вращение. От скорости вращения, замерянное от числа оборотов за определенные промежутки времени рассчитывается скорость ветра. подробнее Облакомер — прибор для определения высоты нижней границы облаков. Современные прибор состоит из направленного лазерного, либо другого источника когерентного света, направленного вертикально вверх, который измеряет расстояние до нижней границы облаков. подробнее Термограф — регистратор изменения температуры воздуха и воды. Прибор, задача которого непрерывно регистрировать и записывать температуру воздуха, воды, влажность и другие метеорологические параметры. Самый частый вид термографа имеет изогнутую биметаллическую пластину, которая изгибается при изменении температуры. Флюгер — прибор для измерения направления ветра. Верхняя часть прибора имеет металлический, деревянные или пластиковый флажок, который поворачивается от действия на него ветра. По изменению угла поворота измеряется направление ветра. подробнее МетеоЗонд — устройство находящееся в атмосфере для измерения ее параметров. Метеозонд представляет собой небольшой беспилотный воздушный шар (аэростат), к которому прикреплена аппаратура измеряющая метеоусловия и параметры, находясь непосредственно на заданной высоте в воздухе. подробнее МетеоСпутник — устройство находящееся на орбите для метеонаблюдений. Это искусственный спутник, которые выводится ракетоносителем на орбиту Земли, где вращаясь по орбите измеряет многие метеорологические данные Земли, которые обрабатываются и используются для составления прогноза погоды на метеорологической карте. подробнее Метеорологическая станция — учреждение, в задачи которого входит наблюдение за погодой, регистрация метеорологических изменений и составление прогноза и синоптической карты погоды. На площадке метеорологической станции располагаются все необходимые приборы для измерения погодных условий. подробнее

    Что относится к измерительным приборам?

    Контрольноизмерительные средства Контр о льно-измер и тельные ср е дства в технике, обобщённое название группы средств, применяемых для измерения и контроля линейных и угловых размеров деталей и готовых изделий. Технические средства с нормированными метрологическими параметрами или свойствами, предназначенные для нахождения значения физической величины опытным путём, принято называть средствами измерения (измерительными).

    • Если же при определении значения физической величины опытным путём необходимо установить, находится ли размер в пределах нормируемых допускаемых значений, то такие средства называются контрольными.
    • Все применяемые для измерения приборы, на которых можно отсчитать значение размера, могут использоваться также для контроля.

    Условно К.-и.с. разделяются на измерительные инструменты и измерительные приборы. Наиболее часто к инструментам относят простейшие средства (,, штангенциркули), а к приборам — более сложные (, и т.д.). В государственных стандартах принято укрупнённое разделение К.-и.с.

    • На и, К мерам относят К.-и.с., предназначенные для воспроизведения физической величины заданного размера (например,, калибры).
    • К измерительным приборам относят средства измерения, выдающие сигнал измерительной информации в форме, доступной для непосредственного восприятия наблюдателем (оператором).
    • Например, в аналоговых приборах показания, т.е.

    значения измеряемых величин, определяют по отсчётному устройству. В регистрирующих приборах предусмотрена регистрация показаний самописцем и печатающим устройством. По принципу действия различают механические, оптические, электрические и пневматические измерительные приборы или комбинированные — оптико-механические, пневмо-электрические, пневмо-оптические и т.д.

    1. Принцип действия прибора часто отражается в его названии, например электроиндуктивный профилометр, пневматический прибор для измерения внутренних размеров и т.д.
    2. В зависимости от принципа действия измерительные приборы имеют различные преобразовательные элементы.
    3. Так, в механических приборах используют механические преобразовательные устройства: резьбовые (например, в ), рычажные в ( ), рычажно-зубчатые, зубчатые (в индикаторе часового типа), пружинные (в микрокаторе); в действие преобразовательных устройств основыва е тся на световых явлениях; в электрических приборах — на электрических явлениях (индуктивности, фотоэлектрических эффектах и др.); в пневматических измерительных приборах — на зависимости количества воздуха, протекающего в единицу времени через отверстие, от площади самого узкого поперечного сечения этого отверстия.

    Основными метрологическими показателями, определяющими эксплуатационные характеристики прибора, являются: цена деления шкалы, диапазон измерений, предел и, Существует условное разделение К.-н.с. на универсальные и специальные. К универсальным средствам измерения относятся те, с помощью которых измеряют и контролируют линейные величины (диаметры и длины) независимо от конфигурации контролируемой детали (штанген-инструмент, микрометры, скобы, и др.).

    Специальные К.-и.с. предназначаются для измерения либо деталей определенной конструктивной формы (например,, и т.д.), либо определённого параметра изделия (шероховатости, плоскостности, прямолинейности и т.д.). По расположению относительно детали различают К.-и.с. накладные, станковые и приставные. Накладные средства измерения располагаются на детали, в станковых средствах деталь располагается при измерении на приборе, приставные средства координируются вместе с деталью относительно одной базовой поверхности.

    По характеру взаимодействия с деталями К.-и.с. разделяют на контактные, чувствительный элемент которых имеет механический контакт с поверхностью детали, и бесконтактные, в которых контакт отсутствует (например, оптические и пневматические приборы). По степени участия оператора в процессе измерения К.-и.с.

    разделяют на ручные, механизированные, полуавтоматические и автоматические (см.), Одним из основных направлений в развитии К.-и.с. является создание мер и приборов, предназначенных для использования их непосредственно на рабочих местах. Большое значение придаётся при этом разработке узкоспециализированных К.-и.

    с повышенной износостойкости и точности, например, контактные части некоторых К.-и.с. оснащают пластинками из твёрдых сплавов и алмаза, приборы с электрическими преобразовательными устройствами имеют отсчётные системы с ценой деления 1 мкм и менее. Наиболее перспективно создание К.-и.с., непосредственно участвующих в технологическом процессе обработки (см.), приборов для контроля параметров, которые должны быть устойчивыми в процессе изготовления деталей (например, прибор для контроля шероховатости поверхности — профилометр), приборов для контроля некруглости детали —, приборов для измерения кинематической погрешности зубообрабатывающих станков и т.д.

    1. Показания таких приборов записываются обычно в виде диаграмм или в цифровой форме.
    2. Широкое распространение получают приборы для предварительной размерной настройки положения режущего инструмента для станков с программным управлением.
    3. Такие приборы позволяют поддерживать заданную точность обработки и значительно сокращают простой оборудования.

    Ускорить процесс получения результатов и уменьшить погрешность измерений позволяет использование К.-и.с. совместно с ЭВМ. См. также ст.,,Н.Н. Марков. Читать подробнее: Контрольноизмерительные средства

    Как называется прибор для измерения длины?

    Измерительный инструмент для всего, что требует измерений

    Выберите страну Выберите регион Выберите город

    Поговорку «Семь раз отмерь — один раз отрежь», наверное, вспоминают чаще других. И вместе с ней из глубин памяти всплывает деревянная линейка, ножницы, испорченный лист бумаги и детское горе. А вот у тех, кто занимается составлением коммерческих предложений и монтажом, эта пословица ассоциируется с упущенной прибылью и испорченными материалами.

    В этом материале мы рассмотрим измерительные инструменты и приборы, как классические, так и новомодные. Новые технологии помогают проводить измерения не только точнее, но и быстрее. В качестве примера таких технологий можно привести электронные шкалы, лазерные указатели, ультразвуковые измерители расстояния.

    Чаще всего приходится проводить линейные измерения объектов. Классическими инструментами для таких измерений являются рулетка, линейка, штангенциркуль, микрометр и калибр.

    Микрометр и штангенциркуль в области монтажа и обслуживания телекоммуникаций применяются редко. Микрометр может использоваться для измерения сечений проводников, а штангенциркуль — для разметки во время слесарных работ (например, при изготовлении крепежных и монтажных отверстий).

    Наибольшей популярностью при измерении протяженных объектов и разметке помещений пользуется рулетка. Пожалуй, она является наиболее часто используемым измерительным инструментом. Приобретая рулетку, первое, на что следует обратить внимание, — это качество полотна.

    • У хороших рулеток полотно изготовлено из гибкой стальной ленты (чем она шире, тем лучше), но за счет поперечного профиля его можно даже на весу выдвинуть из корпуса рулетки и использовать для измерений прямой отрезок длиной до трех метров.
    • Упор в нулевой отметке полотна должен двигаться для обеспечения правильного измерения охватываемого и охватывающего размеров.

    С целью максимального удобства определения внутренних размеров корпус рулетки обычно делают калиброванным, а результат получают, сложив отсчет по выдвинутому полотну с длиной корпуса.

    Если измерения выполняются в основном в вертикальной плоскости, то удобнее применять измерительную штангу (телескопическую линейку). Штанга имеет губки для измерения охватываемого и охватывающего размеров, а также встроенный уровень для вертикального позиционирования.

    Для измерения больших длин на поверхности пола или грунта применяется мерное колесо. С его помощью, например, очень удобно измерять протяженность кабельных трасс на улице или размечать место до повреждения кабеля по данным измерений рефлектометра.

    Еще один, к сожалению, незаслуженно забытый инструмент может очень помочь при наличии выполненных в масштабе строительных чертежей или планов объекта. Какую бы причудливую конфигурацию ни имела трасса кабельной линии, ее длину, если она обозначена на чертежах, всегда можно измерить с помощью курвиметра.

    Другое дело, если плана нет, а заказчик хочет, чтобы, окинув взглядом его офис, переполненный людьми и загроможденный мебелью, вы немедленно ответили на вопрос о стоимости предполагаемых монтажных работ, и как можно точнее. В такой ситуации всегда существует риск: если назвать небольшую цифру, то потом увеличить цену будет сложно, если же назвать завышенную сумму, то заказчик может уйти к конкурентам.

    Однако использование измерителей требует определенных навыков и внимательности: в случае сложной формы помещения или наличия в нем колонн можно легко ошибиться. Во избежание ошибки предпочтительнее использовать измерители с лазерным указателем. Чтобы снизить риск ошибки, измерения следует повторить несколько раз в разных точках.

    Несколько иной набор инструментов необходим при разметке помещения во время монтажа кабельных каналов. К уже упомянутым рулетке и штанге следует добавить уровень, красящую нить для отбивки трассы, лазерный маяк (если у вас есть на него средства) и детектор неоднородностей.

    table>

    Хорошо известный пузырьковый уровень тоже не отстает от общей тенденции. Очень удобны модели со встроенным лазерным указателем — они позволяют без труда разметить вертикальную или горизонтальную линию, углы по 45°. Полученную таким способом или посредством измерений линию наносят на размечаемую поверхность маркером или с помощью красящей нити.

    Лазерный маяк еще более упрощает работу — он устанавливается на одной из стен или на треноге посреди комнаты и выравнивается в горизонтальной плоскости. Причем выравнивание может выполняться вручную или автоматически. С помощью проходящего через развертывающее устройство лазерного луча маяк может рисовать горизонтали и вертикали по всему периметру комнаты.

    Иногда при обслуживании телекоммуникационных систем инженерам требуется измерить температуру. Во-первых, это бывает необходимо для поиска вышедших из строя компонентов, во-вторых, — для определения температурных режимов оборудования. Последняя возможность оказывается полезна для проверки качества принудительной вентиляции в шкафах с телекоммуникационным оборудованием.

    Измерение температуры может проводиться контактным (с установкой датчика на измеряемую поверхность) и бесконтактным (посредством измерения интенсивности инфракрасного излучения) способами. При бесконтактном измерении температуры предназначенные для этого приборы могут выдавать численное значение (ИК-термометры) или показывать тепловую картину (тепловизоры).

    Бесконтактное измерение температуры используется также электриками для оценки качества контакта на шинах находящихся под напряжением силовых щитов. Чем хуже контакт, тем выше его сопротивление, тем больше падение напряжения, тем сильнее он греется. Знание тепловой картины распределительного щита позволяет немедленно установить места, где плохо закреплен ввод или применяется провод не того сечения.

    Для оценки качества работы систем охлаждения оборудования, вентиляции и кондиционирования требуется не только термометр, но и измеритель скорости воздушного потока (анемометр). Иногда они имеют встроенную функцию измерения температуры воздушного потока.