Как Перевести Напор Насоса В Давление?

Как Перевести Напор Насоса В Давление
Начальное избыточное давление насоса — Это давление на свободной поверхности жидкости в месте водозабора. Для открытого резервуара или бака это просто атмосферное (барометрическое) давление. Столб воды высотой 10 м оказывает такое же давление, что и столб ртути (Hg) высотой 0,7335 м. Умножив высоту столба (напор) на плотность жидкости и ускорение свободного падения (g), получим давление в ньютонах на квадратный метр (Н/м2) или в паскалях (Па). Поскольку это очень незначительная величина, в практику эксплуатации насосов ввели единицу измерения, равную 100000 Па, названную баром. Уравнение можно решить в метрах высоты столба жидкости: ρv ] g ] hv = ρHg ] g ] hHgρv ] hv = ρHg ] hHghv = hHg ]

Чем отличается напор и давление?

Статья отредактирована и дополнена в мае 2019 года. Наряду с производительностью давление насоса является его важнейшей характеристикой. Разбираемся что она означает. Заодно ответим на такие вопросы: — Чем давление насоса отличается от напора? — В чем измеряют давление? Как соотносятся бары, атмосферы и метры водяного столба? — Как сопротивление линии влияет на давление насоса? — Как давление зависит от плотности жидкости? — Почему давление в напорной линии не всегда равно полезному давлению насоса? — Почему насос не всегда работает на своем максимальном давлении? — Какое максимальное давление бывает у разных типов насосов? — Как отрегулировать давление насоса? — Где подобрать насос с нужным давлением онлайн? Забегая вперед, сразу скажем — у нас на сайте, никуда ходить не нужно!))) Давление насоса (напор) — наряду с производительностью (подачей, расходом) вторая ключевая характеристика насоса.

  • Показывает способность насоса преодолеть сопротивление трубной системы и переместить жидкость из всасывающей линии в напорную.
  • Если производительность насоса отвечает на вопрос какой объем жидкости насос может переместить за единицу времени, то давление отвечает на вопрос какое именно сопротивление трубной системы (в барах) может преодолеть насос.

Небольшие центробежные насосы (например, аквариумные) способны развивать максимальное давление 0,05 бар (то есть создавать напор воды до 0,5 метра). Некоторые промышленные насосы объемного типа (например, плунжерные) способны развивать давление до 200 бар и даже больше.

В чем измеряют давление насосов? Какие бывают единицы измерения? Основная единица измерения давления для насосов — техническая атмосфера (кгс/см²). Она равна 10 метрам водяного столба (обозначается сокращенно как м.в.ст.).10 м.в.ст. = 1 кгс/см². Другая популярная единица измерения давления – бар (1 бар = 100 000 Паскаль = 0,1 МПа).

Как соотносятся между собой бары/паскали с одной стороны и метры водяного столба/тех. атмосферы с другой? 0,1 МПа = 1 бар = 1,0197 кгс/см² = 10,197 м.в.ст. То есть выходит, что один бар чуть больше, чем одна техническая атмосфера (кгс/см²). А 10 метров водяного столба чуть меньше, чем 1 бар.

Разница составляет менее 2%. Так вот на практике этой разницей пренебрегают и приравнивают бар с технической атмосферой. Говорят, столб чистой воды высотой 10 метров давит с такой же силой, что и 1 бар или 1 атмосфера. И большой ошибки в этом не будет, кроме тех ситуаций, где нужна высокая точность расчетов.

Иногда давление называют напором. Нет ли здесь ошибки? На самом деле ошибки нет. Давление и напор насосов можно считать тесно связанными понятиями. Термин «давление» более корректный и универсальный, его чаще используют для объемных насосов. Термин «напор» обычно используют для центробежных насосов из-за его удобства.

  • Когда говорят про напор, то имеют в виду на какую высоту способен поднять жидкость насос в открытой системе.
  • В открытой системе поток жидкости не изолирован от атмосферы.
  • В такой системе насосу приходится преодолевать не столько сопротивление трубной системы, сколько «бороться» с тяжестью водяного столба в напорной линии.

Типичный пример подбора насоса с нужным напором – это подбор многоступенчатого центробежного насоса. Если нужно поднять воду на высоту 20 этажей (при высоте этажа 3 метра), то говорят, что насос должен развить напор не менее 60 метров (водяного столба).

На самом деле напор насоса должен быть еще немного выше, ведь он должен еще преодолеть потери на трение в трубопроводе. В любом случае давление в напорном трубопроводе при работе насоса составит не менее 6 атмосфер. Как между собой связаны давление, производительность и потребляемая мощность насоса? У центробежных насосов зависимость между производительностью и давлением выражена кривой производительности.

Чем больше давление, тем меньше производительность. При этом потребление энергии насоса растет по мере увеличения производительности. Изображение 1. Зависимость производительности, давления, потребляемой мощности и КПД центробежного насоса. На изображении 1 показаны кривые характеристик одного центробежного насоса. Синяя кривая показывает зависимость производительности от давления. Черная линия показывает мощность на валу насоса по мере роста производительности.

  • И, наконец, кривая зеленого цвета показывает изменение КПД по мере изменения давления.
  • Если сопротивление трубной системы будет равно 0, то есть насос будет выливать воду из напорного патрубка без подключения к линии, то его производительность будет максимальной, а создаваемый напор будет нулевым.
  • Работа в таком режиме для центробежного насоса не очень полезна, поскольку потребляемая мощность будет максимальной и двигатель насоса может сгореть.

Если сопротивление системы будет соответствовать напору 32 метра водяного столба, то насос будет работать в точке, показанной красным цветом. При этом его производительность будет составлять 54 м³/час, давление 32 м.вод.ст. (3,2 кгс/см²), потребляемая мощность (на валу) 6,6 кВт, а КПД будет равен 71,3%.

  • У объемных насосов давление и производительность тоже имеют корреляцию, но обычно более слабую, чем у центробежных насосов.
  • Исключение – мембранные пневматические насосы, которые имеют кривые характеристик, похожие на центробежные насосы.
  • Обычно объемный насос имеет производительность, определяемую объемом перемещения жидкости за один рабочий такт и скоростью совершения этих тактов.

Рабочее же давление объемного насоса определяется сопротивлением системы. При максимальном рабочем давлении производительность объемного насоса обычно немногим меньше, чем при нулевом давлении. Сопротивление системы В реальных условиях насос всегда выполняет некоторую полезную работу по перемещению жидкости в трубопроводной системе.

  • Система может быть простейшей и состоять из трубы, опущенной в колодец (всасывающая линия насоса), и шланга, ведущего от насоса в бочку (напорная линия).
  • В других случаях система может быть сложной и состоять из десятков различных трубопроводных контуров и резервуаров.
  • Система может быть двух типов: открытая (сообщается с атмосферой) и закрытая (изолирована от атмосферы).

В открытой системе насосу приходится преодолевать статическое и динамическое сопротивление, а в закрытой есть только динамическое сопротивление. Существует два вида сопротивления в системе:

Статическое (давление столба жидкости, которое нужно преодолеть). Статическое сопротивление системы зависит только от высоты подъема жидкости насосом и ее плотности. Динамическое (потери давления на трение при перемещении жидкости). Динамическое сопротивление зависит от многих факторов:

— Диаметр труб. Он должен соответствовать диаметру труб насоса. Особенно важно, чтобы напорный патрубок насоса не подключался к трубе маленького диаметра – это создаст высокое сопротивление системы и приведет к росту давления в ней при снижении производительности (см.

ниже Дросселирование). Засорение трубопровода так же приводит к уменьшению полезного проходного сечения трубы. — Наличие изгибов и колен трубопровода. Все изгибы создают дополнительное сопротивление. Всегда рекомендуют проектировать трубопровод с минимальным числом изгибов. — Наличие сужений и расширений трубопровода (например, задвижек и регулирующих вентилей).

Такие элементы деформируют поток жидкости и приводят к дополнительным потерям из-за образования дополнительной турбулентности течения потока. — Материал трубопровода. Чем более шероховатый материал трубы, тем сильнее будет сопротивление. Например, в стальном трубопроводе потери будут несколько выше, чем в полипропиленовом.

Длина трубопровода. Чем длиннее трубопровод, тем сильнее будут потери на трение. Зависимость потерь давления от длины трубопровода определяется по сложной формуле, которая включает в себя не только длину, но также диаметр и материал труб, скорость течения и вязкость жидкости. — Вязкость жидкости. Чем более вязкая жидкость, тем выше потери на сопротивление при ее перемещении.

— Скорость течения жидкости. Чем быстрее течет жидкость, тем выше потери на сопротивление. Изображение 2. Реальная производительность и давление насоса будут зависеть как от параметров самого насоса, так и от характеристики сопротивления трубопроводной системы На изображении 2 показано, что реальная производительность насоса (центробежного или объемного) зависит не только от его собственных характеристик, но и от характеристик трубопроводной системы.

  • Обратите внимание, что даже про нулевой производительности кривая сопротивления системы не равна 0.
  • Это обусловлено наличием в ней статического сопротивления.
  • Общее сопротивление системы всегда равно сумме статического и динамического сопротивления.
  • Если система короткая и диаметр труб в ней достаточный, то расчетом динамического сопротивления можно пренебречь.

Если же система длинная, то пренебрегать этим расчетом не стоит. Наш онлайн-калькулятор позволяет учесть все нюансы трубопроводной системы и рассчитать потери давления в трубопроводе. Разберем пример. Возьмем центробежный насос с максимальным напором 15 м.в.ст., максимальной допустимой производительностью 3,6 м³/час и рабочей точкой 2,7 м³/час при напоре 10 метров.

  • Насос имеет присоединение G 1″ (один дюйм).
  • Для расчета сопротивления линии нам нужен точный внутренний диаметр трубы в мм.
  • Согласно ОСТ 266 резьба BSP 1″ (резьба G1″) имеет внутренний диаметр 30,29 мм.
  • Нам нужно при помощи этого насоса поднять воду на высоту 10 метров по вертикали, при этом общая длина трубы составит 100 метров.

Какова будет производительность насоса? Изображение 3. Насос подает воду на высоту 10 метров при общей длине трубы 100 метров Если сделать расчеты, то выяснится, что при расходе 45 л/мин (2,7 м³/час) сопротивление линии составит 4,28 м.в.ст., а значит насос не сможет работать в этой точке. Возьмем несколько точек по производительности и построим кривую сопротивления нашей линии. Изображение 4. В нашем примере насос будет работать с производительностью 1,9 м3/час при давлении в линии 12,4 м.в.ст. (1,24 кгс/см²). Если сделать расчет сопротивления нашей линии при нескольких значениях производительности и соединить эти значения кривой линией, то сразу становится очевидной реальная рабочая точка, в которой насос будет работать в нашем примере.

Это точка пересечения двух кривых. Она составит 1,9 м3/час при давлении в линии 12,4 м.в.ст. Как избежать таких потерь производительности? Самое простое – укоротить напорную линию или увеличить диаметр трубы. Например, если взять в качестве напорной трубы не G1″, а следующую по размеру G1¼» (внутренний диаметр 38,95 мм), то потери давления уменьшатся в 3 раза, а производительность насоса составит примерно 2,4 м3/час.

Ловушки при определении давления (напора) насоса

Ловушка №1. Не забывайте про плотность жидкости. На практике обычно говорят, что напор в 50 метров равен 5 барам (атмосферам) и иногда забывают, что речь не об абстрактных 50 метрах, а 50 метрах ВОДЯНОГО СТОЛБА. Да, если насос перекачивает воду, то все верно. Но если насос будет перекачивать насыщенный раствор сахара с плотностью в 1,3 раза больше, чем у воды, то при напоре в 50 метров такой плотной жидкости, давление составит уже не 5, а 6,5 кгс/см², то есть в 1,3 раза больше (пропорционально увеличению плотности). Соответственно для перекачивания жидкостей с повышенной плотностью специально подбирают насосы с усиленным корпусом и увеличенной мощностью двигателя.

Изображение 5. Зависимость давления в напорной линии от плотности жидкости. На изображении 5 показана зависимость давления в напорной линии от плотности жидкости. На левом рисунке насос перекачивает чистую воду с плотностью 1 кг/дм³. Перепад высоты между манометром и точкой подъема жидкости насосом составляет 50 метров.

При этом манометр показывает давление 5 кгс/см². На среднем рисунке насос перекачивает растворитель с плотностью 0,7 кг/дм³ (ниже плотности воды). При том же самом перепаде высоты 50 метров манометр будет показывать лишь 3,5 кгс/см². Наконец, на правом рисунке насос перекачивает насыщенный раствор сахара с плотностью 1,3 кг/дм³ (выше плотности воды).

При перепаде высоты 50 метров манометр покажет давление 6,5 кгс/см².

Ловушка №2. Не думайте, будто измененная плотность жидкости изменит кривую характеристик насоса

Возьмем раствор сахара плотностью 1,3 кг/дм³ (то есть в 1,3 раза больше чем у воды). Какой насос нужен, если раствор сахара требуется поднять на высоту 50 метров? Есть мнение, что для перекачивания раствора сахара нам нужен насос, изначально рассчитанный на напор 65 метров (при работе с водой), который будет выдавать лишь 50 метров напора при работе с раствором сахара.

Но это ошибка! Кривая работы центробежного насоса не зависит от плотности жидкости! Если насос может поднять столб воды на высоту 50 метров, то на такую же высоту он сможет поднять и раствор сахара с той же самой производительностью. Но какой ценой!? Ведь давление в напорной линии вырастет пропорционально увеличению плотности.

А значит вырастет и потребляемая насосом мощность. Все что требуется – поставить более мощный двигатель на тот же самый насос. Однако следует помнить, что если изначально насос конструктивно был рассчитан на перекачивание воды, то при работе с более плотной жидкостью вырастет нагрузка на все его внутренние узлы. Изображение 6. Плотность жидкости не влияет на производительность и напор насоса, но влияет на давление и потребляемую мощность. На изображении 6 показана ситуация, когда один и тот же насос перекачивает воду (слева) или раствор сахара (справа). Высота подъема жидкости и производительность насосов будут одинаковыми в обоих случаях.

Ловушка №3. Давление, создаваемое насосом, не всегда равно давлению в напорной линии и не всегда связано с высотой подъема жидкости насосом.

Дело в том, что жидкость может попадать в насос уже с некоторым давлением (положительным или отрицательным). Изображение 7. При работе в замкнутом контуре полезный напор насоса равен 0. На изображении 7 показана схема, при которой насос перекачивает воду в замкнутом (но не изолированном от атмосферы) контуре. Высота подъема жидкости после насоса равна 4 метра, но и на вход в насос вода попадает с тем же самым подпором 4 метра.

Поскольку статическое давление на входе и выходе из насоса равны, то полезный напор, создаваемый насосом, будет равен 0 (или чуть больше 0 с учетом потерь на сопротивление). Иначе говоря, насос будет работать при нулевом перепаде давлений. Все, что требуется насосу в этой ситуации – это преодолеть сопротивление трубопровода.

При этом давление в корпусе насоса будет равно 0,4 кгс/см2 (то есть будет равно статическому давлению столба воды высотой 4 метра). Изображение 8. Полезный напор насоса на этом рисунке составляет 20 метров в.ст. (30 на выходе минус 10 на входе). На изображении 8 вода поступает в насос с положительным подпором в 10 м.в.ст (манометр на входе в насос показывает 1 кгс/см²). Насос же поднимает водяной столб на высоту 30 м.в.ст.

(манометр на выходе из насоса показывает 3 кгс/см²). Полезный напор насоса составляет 20 м.в.ст. (30 на выходе – 10 на входе). Иными словами перепад давлений в насосе составит 2 кгс/см². С точки зрения самого насоса ситуация с 10 метрами подпора на входе и 30 метрами напора на выходе идентична той, когда, например, на входе нулевое давление, а напор на выходе равен 20 метрам.

То есть 30 – 10 = 20 – 0. Только следует помнить, что корпус насоса должен быть рассчитан именно на давление в напорной линии, а не на размер перепада между входом и выходом. В нашем примере насос создает перепад давлений 2 кгс/см2, однако давление в корпусе насоса при этом составит 3 кгс/см². Изображение 9. Полезный напор насоса на этом рисунке составляет 34 метра в.ст. (30 на выходе + 4 высота самовсоса). На изображении 9 насос работает в режиме самовсоса, иначе говоря — с отрицательным подпором на всасывании. Высота самовсоса составляет 4 метра, а это значит, что в напорной линии давление будет ниже атмосферного на 0,4 кгс/см2.

Манометр на входе в насос будет бесполезен, потому что он показывает давление только выше атмосферного. Чтобы увидеть отрицательное давление на входе в насос нужно поставить вакуумметр. В данном случае он покажет значение абсолютного давления 0,6 кгс/см2 (то есть на 0,6 кг/см2 выше абсолютного вакуума, но на 0,4 кг/см² ниже атмосферного давления).

Подъем воды насосом составляет 30 м.в.ст. Высота самовсоса — 4 метра. Полезный напор, создаваемый насосом, будет равен 30 + 4 = 34 м.в.ст. или 3,4 кгс/см².

Ловушка №4. Рабочее давление насоса не зависит от его максимального давления.

Часто считают, что слишком мощный насос не стоит ставить в маленькую систему. Будто он создаст такое давление, которое разорвет трубы. Однако это утверждение может быть справедливым, только если пропускная способность трубопроводной системы низкая (например, если диаметр трубы меньше диаметра патрубков насоса).

Если же пропускная способность системы достаточна, то насос не создаст в ней избыточного давления. Разберем пример. Требуется перекачать воду с производительностью 5 м³/час с подъемом на высоту 32 метра. Однако в наличии есть центробежный насос, который обеспечивает производительность 5 м³/час при напоре 57 метров (например, Pedrollo 2CPm 25/16A ).

То есть наш насос намного мощнее, чем надо. Означает ли это, что насос создаст огромное давление в системе, намного больше, чем требуется? Ответ простой – нет. Давайте взглянем на кривую характеристик центробежного насоса. Изображение 10. Рабочая точка центробежного насоса зависит от сопротивления в линии На изображении 10 видно, что насос может работать как при напоре 32 метра (рабочая точка №2 на рисунке), так и при напоре 58 метров (рабочая точка №1 на рисунке). Однако в какой именно точке насос будет работать выбирает не он сам, а сопротивление системы.

Если требуется поднять воду всего лишь на высоту 32 метра, то насос вынужден будет работать в рабочей точке №2. В этом случае его производительность правда будет значительно выше, чем требуется – 9,6 м³/час вместо требуемых 5 м³/час. Еще проще ситуация с объемным насосом, например, с шестеренным. Если он рассчитан на максимальное давление 10 бар и производительность 5 м³/час, то при сопротивлении 10 бар он покажет производительность 5 м3/час.

Если же сопротивление в линии будет небольшим (5 бар), то насос обеспечит ту же самую производительность 5 м³/час при давлении 5 бар. Изменится только потребляемая мощность (снизится в 2 раза). Таким образом если сопротивление в линии ниже, чем максимальное давление насоса, реальное давление в линии окажется равно этому сопротивлению (а не максимальному давлению насоса).

Если сопротивление в линии выше, чем то, что может преодолеть насос, для насоса это будет равносильно работе на закрытую задвижку. При этом динамические насосы будут работать «вхолостую» и с ними может ничего не произойти, кроме риска перегрева (ведь они перестанут охлаждаться потоком жидкости). Мембранные пневматические насосы в этой ситуации остановятся и с ними не будет ничего плохого.

Большинству же объемных насосов работа на закрытую задвижку строго противопоказана. Ведь они не ограничены верхним пределом создаваемого давления и будут пытаться повысить его, пока их двигатель не перегреется или корпус насоса не повредится от избыточного давления.

Давление различных видов насосов Давление зависит от вида насоса. Насосы бывают динамические (центробежные, вихревые) или объемные, (шестеренные, винтовые, плунжерные, перистальтические, мембранные). Центробежные одноступенчатые насосы не способны обеспечивать давление более 10-11 кгс/см² (то есть не могут развить напор воды более 100-110 метров) даже при очень большой мощности электродвигателя.

Вихревые насосы обеспечивают давление до 16 кгс/см² (напор воды 160 метров) даже при небольшой мощности благодаря особой форме рабочего колеса. Каждая частичка воды соприкасается с таким колесом несколько раз и приобретает большую энергию. Обратная сторона такой «выгоды» — значительное ухудшение производительности насоса.

  1. Другим возможным решением улучшить напор насоса — применение нескольких последовательных колес в корпусе одного насоса.
  2. Такие агрегаты называют многоступенчатыми насосами,
  3. Их КПД по сравнению с вихревыми достаточно высок.
  4. Максимальное давление этих насосов достигает 30 кгс/см2 (300 метров водяного столба).

Высокое давление могут обеспечить объемные насосы различных типов. К ним относятся шестеренные, винтовые, плунжерные, перистальтические, мембранные). Шестеренные насосы в нашем каталоге обеспечивают давление до 14,5 кгс/см². Большинство мембранных пневматических насосов обеспечивают максимальное давление до 7-8 кгс/см².

Читайте также:  Как Правильно Погружаться Под Воду На Глубину?

Давление насоса можно регулировать с помощью изменения скорости вращения вала насоса.

Для центробежного насоса снижение частоты вращения вала приводит к пропорциональному уменьшению максимальной производительности и уменьшению максимального давления во второй степени. Например, уменьшение частоты вращения в 1,5 раза приводит к уменьшению производительности в 1,5 раза и уменьшению давления в 2,25 раза (1,5²). Изображение 11. Уменьшение скорости вращения вала центробежного насоса приведет к одновременному уменьшению давления и производительности в системе. На изображении 11 центробежный насос изначально работает на обычной скорости 2900 об/мин. С учетом сопротивления системы он работает в рабочей точке №1.

Его производительность составляет 3,1 м³/час при напоре 4,5 м.в.ст. Затем частота вращения вала была уменьшена в 1,5 раза до 1933 об/мин. Это привело к изменению кривой характеристик насоса. Максимальная производительность снизилась в 1,5 раза (с 3,6 до 2,4 м³/час), а максимальный напор снизился в 2,25 раза (с 20 до 8 м.в.ст.).

Поскольку производительность насоса снизилась, то снизилось и сопротивление трубопроводной системы. Давление в системе упадет вместе с производительностью. Теперь новая кривая характеристик насоса (1933 об/мин) будет пересекаться с кривой трубопроводной системы в новой точке №2.

Теперь производительность составит 1,9 м³/час при напоре 3 м.в.ст. Для объемных насосов уменьшение частоты вращения вала насоса приводит к пропорциональному снижению производительности и потребляемой мощности. За счет освободившегося запаса по мощности такой насос сможет работать в системе с увеличенным давлением (по сравнению с работой при номинальной скорости вала).

Если же объемный насос остается в той же системе, где и работал до понижения скорости, то при снижении производительности произойдет и некоторое уменьшение давления из-за снижения сопротивления системы. Как изменить скорость вращения вала насоса? Менять скорость вращения вала насоса, например, можно при помощи понижающей/повышающей редукторной (или ременной) передачи между двигателем и насосом.

Частоту вращения вала двигателя (и соответственно насоса) также можно регулировать при помощи частотного преобразователя. Этот способ регулирования давления является наиболее гибким и экономичным. Он позволяет насосу подстраиваться под изменение параметров системы и работать без существенного понижения КПД, несмотря на уменьшение производительности.

Как правило, сильное падение КПД происходит лишь при очень резком (менее 30% от номинала) уменьшении частоты вращения.

Дросселирование — метод изменения параметров трубопроводной системы путем уменьшения сечения напорной или всасывающей линии с помощью задвижки, затвора или крана.

Уменьшение сечения напорной линии уменьшает ее пропускную способность (а с ней и производительность), зато позволяет повысить давление на участке между насосом и задвижкой. Такой способ регулирования параметров насосов уменьшает КПД насоса из-за дополнительного сопротивления в системе, которое насос пытается преодолеть.

  • Уменьшение сечения всасывающей линии так же уменьшает производительность насоса, с одновременным понижением давления (давление на выходе из насоса понижается за счет создания дополнительного разрежения во всасывающей линии между задвижкой и насосом).
  • КПД насоса так же снижается, но несколько меньше, чем при дросселировании напорной линии.

Зато растет риск возникновения кавитации, а с ним и риск быстро погубить насос.

Увеличение диаметра трубопровода. Эта операция противоположна дросселированию.

Если увеличить диаметр напорного трубопровода, то сопротивление линии уменьшится. Давление в линии снизится. Производительность (в случае с центробежным насосом), напротив, возрастет. Имеет смысл только при большой протяженности напорного трубопровода, чтобы эффект был заметен.

Байпасирование — (by pass — в обход) — еще метод регулирования подачи и давления насоса путем манипуляций с трубопроводной линией.

Заключается в установке регулируемого или нерегулируемого перепуска (байпаса) с напорной линии на всасывание. То есть часть жидкости с напорной линии при помощи байпаса будет возвращена обратно во всасывающую линию. По отношению к насосу — это аналогично снижению сопротивления, т.е.

Комбинация методов

Любой метод регулирования давления насоса влияет и на другой его параметр – производительность. А что если нам нужно изменить давление в системе, но при этом сохранить производительность на том же уровне? Здесь поможет только комбинация методов. Можно, например, уменьшив частоту вращения вала насоса, одновременно увеличить диаметр труб в напорном трубопроводе.

Однако возможность применения тех или иных методов зависит от конкретной трубопроводной системы и универсального решения дано быть не может. Чаще же всего для решения таких задач используют автоматические насосные станции, состоящие из нескольких насосов, частотных преобразователей и управляющей автоматики.

Такие станции могут самостоятельно поддерживать нужные параметры в системе при необходимости включая или отключая некоторые насосы, а также изменяя им частоту вращения двигателя Полезные статьи: Как рассчитать потери напора в трубопроводе в зависимости от его длины и диаметра? Воспользуйтесь нашим онлайн-калькулятором расчета потерь напора в трубе.

Чем отличается подача от напора?

Подача — это объем жидкости, подаваемой насосом в единицу; времени, выраженной в м 3 /час (кубометров в час) или л/сек, (литров в секунду). Обозначается «Q». Напор — это разность удельных анергии жидкости в сечениях после и до насоса, выраженная в метрах водного столба.

  • Обозначается «Н».
  • В насосах объемного типа пользуются понятием «давление», выраженным в атмосферах (кГс/см ) или мегаласкалях (МПА) (один мегапаскаль равен 10 атмосферам).
  • Напорная характеристика отражает основные потребительские свойства, насоса.
  • Выбор насоса начинается с подбора напора (давления) и подачи.

При выборе насоса следует учитывать разброс параметров насоса по подаче и напору, в том числе при различной обточке рабочего колеса, а также возможность нахождения требуемого режима работы в пределах рабочей области его характеристики. Важным гидравлическим параметром насоса является допустимая вакуумметрическая высота всасывания, характеризующая нормальные условия подхода жидкости к рабочему колесу.

  1. Эта величина выражается в метрах водяного столба при температуре 20°С и при нормальном атмосферном давлении (10 м вод. ст.).
  2. В силу разных причин, в том числе из-за сложности физического процесса, происходящего не всасывании насоса, этому важнейшему параметру при эксплуатации и при подборе насосов не уделяется должного внимания.

Большая часть неприятностей при эксплуатации насоса связана с плохими условиями на всасывании насоса и возникновением, как следствие этого, кавитации. Кавитация ведет к быстрому износу насоса или к его разрушению из-за вибрации (чаще всего подшипниковых узлов).

  1. При появлении признаков неустойчивой работы насоса на это следует обратить внимание.
  2. Если вы обращаетесь за консультацией по работе насоса, вам следует при заполнении опросного листа внимательнейшим образом характеризовать всасывающую линию, учитывая, что на всасывающую способность насоса отрицательно влияют следующие факторы: — высокая температура (более 60°) перекачиваемой жидкости; — не плотности во фланцевых соединениях и «сальниковой» запорной арматуре на всасывающей линии; — малый диаметр и большая протяженность всасывающей линии; — засорение всасывающей линии.

Как и всякую машину, насосный агрегат характеризует потребляемая мощность, определяющая комплектующий двигатель. Величина мощности насоса находится в прямой зависимости ‘от величины напора и подачи и обратно пропорциональна его коэффициенту полезного действия (к.п.д.) Разброс к.п.д.

насосных агрегатов велик (от 20 до 98%). Столь существенный разброс определяется разным характером взаимодействия рабочего органа с жидкостью. Общая закономерность: динамические насосы значительно уступают по этому параметру насосам объемного типа. Значимость этого параметра для больших насосов велика.

Одним из характерных приемов повышения к.п.д. для центробежных насосов является обточка рабочего колеса. Конкретный подбор рабочего колеса под нужные режимы (подача и напор) позволяет, особенно на крупных насосах, получать значительную экономию энергии.

  • На выбор комплектующего электродвигателя в значительной мере может влиять удельный вес перекачиваемой жидкости и вязкость (с повышением удельного веса и увеличением вязкости возрастает потребляемая мощность).
  • С эксплуатационной точки зрения общие для любой машины характеристики, надёжность и срок службы, будут освещены в соответствующих типам насосов разделах обзора, в этой части основное внимание будет уделено гидравлическим понятиям и в первую очередь определяющим параметрам насосов и их регулированию, т.е.

подаче и напору. Под регулированием работы насоса подразумевается процесс изменения соотношения между подачей и напором. Регулирование насоса можно осуществлять двумя методами: — конструктивное изменение характеристики насоса; — изменение условия работы системы «насос-сеть».

Универсальным методом (как для динамичных насосов, так и для объемного типа) изменения характеристики насоса является изменение числа оборотов привода. При этом надо учитывать, что подача находите. в прямой зависимости от оборотов, а напор (в центробежных) — в квадратичной зависимости. При существующем уровне развития техники этот метод для насосостроения является дорогостоящим, хотя с точки зрения энергетических затрат, он экономичен.

В практике насосостроения нашло применение регулирование числа оборотов в основном с помощью вариаторов и меньшее с помощью гидромуфт, электромагнитных муфт скольжения (ЭМС) или регулирования электропривода (тиристорные преобразователи частоты ТПЧ и синхронные электродвигатели).

  1. Положительной особенностью этого метода является то, что на группу из нескольких рабочих насосов достаточно иметь один регулируемый насос.
  2. Это существенно снижает затраты и обеспечивает конкурентоспособность этого метода с другими методами.
  3. Дальнейшие описания в части регулирования насосов будут относить к центробежным насосам, хотя большая часть этих положений будет относиться и к осевым, и особенно к вихревым.

Особенности явлений, характерных для осевых и вихревых насосов, будут рассмотрены при их анализе. Конструктивное изменение характеристики насоса. Широко распространенным методом регулирования характеристики центробежного насоса является изменение диаметра рабочего колеса (обточка).

Имеется в виду, что напор насоса находится в квадратичной зависимости от диаметра рабочего колеса при прочих равных условиях. Обтачивая (уменьшая) диаметр рабочего колеса можно значительно изменить поле работы насоса. Чтобы получить нужный напор насоса при обточке колеса, необходимо существующий напор умножить на квадратичную величину отношения диаметра обточенного колеса к диаметру обтачиваемого.

В практике насосные заводы уже предлагают потребителям конкретные модификации с различной обточкой колеса и с меньшей, соответственно, мощностью комплектующего электродвигателя. Другим методом регулирования работы центробежного насоса является изменение условий работы насоса на сеть.

Графическое изображение напорной характеристики центробежных насосов представляет собой, как правило, пологую кривую, снижающуюся при большей подаче. Другими словами при большей подаче мы имеем меньший напор и наоборот. Для каждой конструкции насоса имеется своя напорная характеристика, определяемая крутизной и максимальной величиной к.п.д., т.е.

зоной оптимальной работы. Рабочая точка насоса на этой кривой определяется сопротивлением «сети». Если менять сопротивление сети. например закрывая задвижку, то и рабочая точка будет смещаться влево по кривой, т.е. насос будет выбирать режим работы на меньшей подаче, так как «вынужден» работать с большим напором, чтобы преодолеть дополнительное сопротивление (задвижки).

  1. Существует ещё один способ изменения условий работы насоса на сеть — это байпасирование, т.е.
  2. Установка регулируемого или нерегулируемого перепуска (байпаса) с напорной линии на всасывание.
  3. По отношению к насосу — это аналогично снижению сопротивления, т.е.
  4. Происходит снижение напора.
  5. По отношению к потребительской сети — это аналогично снижению подачи.

В результате рабочая точка (Q-H) сместится круто вниз, т.е. можем в потребительской сети получить одновременно меньший напор и меньшую подачу (энергия жидкости идет на сброс). Рассмотренные два метода регулирования работы относятся непосредственно к насосу.

Однако с общей точки зрения потребителя чаще интересует насосная система, обеспечивающая нужный напор и подачу. Такой системой выступает насосная станция. В отношении насосной станции вопрос регулирования напора и подачи может рассматриваться шире за счет возможностей соединения насосов параллельно и последовательно.

При параллельном соединении насосов суммируется подача. при последовательном — напор. Если на насосной станции необходимо получить нужные рабочие параметры (Q и Н), то всегда существует возможность путем комбинаций набора ряда насосов с ограниченной подачей соединить их параллельно, чтобы получить большую подачу и последовательно — чтобы получить больший напор На насосных станциях это осуществляется всегда.

Для получения необходимого напора на автономных насосных станциях последовательное соединение (бустерные или напорные насосы) применяется реже. В практике это осуществляется через отдельные каскады насосных станций (станции 1,П,Ш-го подъема). Возможность применения насосов с параллельным и последовательным соединением в работе следует учитывать, так как потребитель довольно часто сталкивается с отсутствием нужного насоса по проекту из-за дефицита или снятия его с производства без соответствующей замены, что вошло в практику нашего насосостроения.

Следует обратить внимание, что последовательное и параллельное соединение центробежных насосов, имеющих подобную напорную характеристику, не дает, как правило, возможность получения двойного значения напора и подачи. Они будут несколько меньше. Это происходит по следующим причинам.

При параллельном соединении не удается плавно соединить потоки, напорные трубопроводы из-за удобства монтажа заужают, делают лишние повороты. Это всё приводит к дополнительному сопротивлению и соответственно к смещению рабочей точки на меньшую подачу обоих насосов. При последовательном соединении насосов уменьшение напора происходит из-за потерь на промежуточном участке между насосами.

Это вызвано наличием арматуры на промежуточном участке и уменьшенным диаметром трубопровода, принимаемым, как правило, равным диаметру всасывающего патрубка насоса, в который подает жидкость другой насос. При последовательном соединении следует обратить внимание на допустимое давление на входе в насос в зависимости от материала корпуса и типа уплотнения.

  • Допустимое давление на входе насоса, корпус которого изготовлен из чугуна, не должно превышать 8 кГс/см (80 м.в.ст.), в то же время для стального корпуса давление 25 иГс/см, как правило, является допустимым.
  • Мягкий сальник допускает давление до 10 кГс/см, торцевое уплотнение — до 25 кГс/см ; щелевое и манжетное уплотнение, обеспечивающее само уплотняющее воздействие за счет давления рабочей жидкости, поддерживает давление только с одной стороны и соответственно при этом типе уплотнения не допускается давление на входе в насос.

Если изложить главные требования при эксплуатации центробежных насосов, то следует помнить два основных условия: — пуск насоса следует производить при заполненных всасывающем трубопроводе и корпусе насоса, и закрытой напорной задвижке; — запрещается осуществлять пуск насоса при закрытой или не полностью открытой всасывающей задвижке, а также работать более 2-^3 минут при закрытой напорной задвижке.

  • Параметры насосного оборудования в обзоре будут представляться в обозначениях, действующих до 1991 года.
  • Q — подача (м 3 /час — кубометры в час или л/сек.
  • Литры в секунду); Н — напор ( м.в.ст.
  • Метры водяного столба); Р — давление (кГс/см — атмосферы или МПА — мегапаскали); N — мощность (квт); n — число оборотов в минуту или допускаемый кавитационный запас; n x — число ходов рабочего органа в минуту (для насосов поршневого типа); Т — температура в градусах С(по Цельсию) и К (по Кельвину); D h д — допустимая вакуумметрическая высота всасывания (метры водяного столба); h — коэффициент полезного действия насосов (к.п.д.) в %.14 Данные выше рекомендации помогут Вам принять быстрое решение в подборе насоса при дефиците времени.

С целью правильной эксплуатации насосного оборудования и нахождения оптимального технического решения в реальной обстановке целесообразно воспользоваться рекомендацией специалиста. В обозначении насосного оборудования традиционно закладывается много информации.

К вопросу о взаимозаменяемости центробежных насосов. В связи с ликвидацией централизованной системы материально-технического обеспечения и зачаточным состоянием рынка, приобретение продукции производственно-технического назначения, в том числе и дефицитного насосного оборудования связано для многих потребителей с большими трудностями.

В этой ситуации применение имеющегося в наличии насосного оборудования в конкретных условиях становится более актуальным, потому что насосы, как правило, работают в технологических процессах и системах водоснабжения, где потери из-за остановки насосов несопоставимы с их стоимостью.

При отсутствии заменяющих насосов с параметрами, близкими заменяемому, требующиеся системе параметры можно получить применяя два насоса вместо одного, путем последовательного или параллельного их соединения. При замене следует руководствоваться следующими принципами. Во-первых, использовать для замены насос по возможности с меньшим рейтингом дефицита, чем заменяемый.

По стоимости взаимозаменяемые насосы желательно иметь сопоставимыми. Однако, при этом не должно быть догматического подхода. Иногда приходиться заменять чугунные насосы на более дорогие из углеродистой стали и даже из нержавеющей стали, но применение насосов из стали за счет более длительного срока эксплуатации сможет компенсировать первоначальные затраты.

Во-вторых, предпочтительнее производить замены насосов один на один. При анализе подходов замены начинать следует с изучения того, как влияет работа насоса с другими рабочими параметрами в целом на весь технологический процесс. Например, при анализе подходов замены погружного насоса следует иметь ввиду, что этот тип насоса работает, как правило, с периодическим отключением в зависимости от уровня откачиваемой жидкости.

Это обстоятельство позволяет установить насос с большим значением подачи относительно оптимального значения, но при этом он будет реже включаться и наоборот. Второй пример: следует тщательно изучить влияние на систему установки более высоконапорного насоса, чем это заложено в проекте, и не спешить обтачивать колесо, так как выбор низконапорного насоса проектными организациями часто определяется по соображениям экономии электроэнергии за счет установки менее мощного электродвигателя в насосном агрегате.

  • Прочностные же характеристики элементов системы (трубы, арматура, сосуды и т.д.), как правило, позволяют варьировать в широком диапазоне величину напора центробежных, вихревых и осевых насосов.
  • Внимательно следует анализировать систему, с точки зрения прочностных характеристик, при заменах объемных насосов, если устанавливается более высоконапорный насос в сравнении с проектньм.

При установке более мощного насоса (если это позволяет технологический процесс) следует обратить внимание на пусковую электроаппаратуру и питающий кабель. Часто в качестве заменяющего используется насос с более низким к.п.д., например, вихревой насос вместо центробежного.

  1. Тогда,,чтобы получить аналогичные рабочие параметры, надо применить насос с большей мощностью электродвигателя.
  2. Иногда бывает целесообразно применить насос с тем же электродвигателем, но с меньшими значениями рабочих параметров (подача, напор), если это допускает технологический процесс.
  3. В этом случае пусковая аппаратура не меняется.

Применение одного насоса вместо другого часто затрудняется необходимостью использовать заменяющий насос в нерабочей зоне. При этом следует иметь ввиду, что рабочая зона для центробежных насосов (она показывается в каталогах на напорных характеристиках) во многом определяется экономичностью работы агрегата в этом диапазоне, т.е.

  • Работой с наибольшим значением к.п.д.
  • Для маломощных насосов этот параметр не является особо актуальным, а тем более в ситуации, когда может нарушиться и остановиться технологический процесс.
  • Выход насоса за границы «рабочей зоны» позволяет в некоторых ситуациях приспособить заменяющий насос для работы в данном технологическом процессе.

При использовании центробежного насоса на запредельной от максимального значения подача следует обратить внимание прежде всего на температурные условия работы электродвигателя (возможна его перегрузка), чтобы температурный режим электродвигателя позволял работать агрегату в приемлемых условиях.

Часто в практической работе решение вопроса зависит от возможности использования насоса в режиме с меньшей подачей, чем он рекомендован «рабочей зоной». При использовании насоса в этом диапазоне подач (запредельной от минимального значения подачи) следует устранить существенное негативное явление в центробежном насосе — работу в помпажном режиме.

Этот режим приводит к неустойчивой работе насоса и может резко понизить надёжность работы всей системы. Неустойчивый режим работы появляется только у насосов, не обладающих непрерывно «подающей характеристикой большинство центробежных насосов её не имеют.

При переходе на режим малых подач (если это требуется от насоса для работы в диапазоне подач заменяемого насоса.) насос попадает в возрастающую (неустойчивую) часть напорной характеристики. Чтобы устранить это негативное явление целесообразно использовать байпасирование (перепуск части подачи с напорной линии во всасывающую), при этом на внешней сети потребитель получает заданную малую величину подачи, а сам насос работает в устойчивом диапазоне «падающей характеристики».

Как метод заменяемости насосов можно рассматривать использование высоконапорного насоса в диапазоне работы низконапорного. При этом можно говорить о трех приемах. Первый и наиболее широко распространенный метод (он не требует конструктивных изменений в системе) — дросселирование.

  1. На напорной линии насоса, как правило, имеется арматура.
  2. С помощью напорной задвижки (крана) зауживается проходное сечение напорного трубопровода, и часть напора, за счет дросселирования гасится (энергия напора переходит в энергию тепла).
  3. Следует при этом учитывать, что с повышением сопротивления сети снижается и подача насоса, т.е.

насос «ползает» строго по кривой напорной характеристики, т.к. имеется детерминированная зависимость между подачей и напором. Второй метод — это снижение напора за счет байпаси-рования. Снижение напора с помощью перепуска жидкости с напорной линии во всасывающую обеспечивает снижение напора, величина которого зависит от крутизны характеристики и колеблется в диапазоне от 30 до 10%.

  • Этот прием обладает тем достоинством, что его используют во временных схемах.
  • Например, с выходом низконапорного насоса устанавливают высоконапорный насос с байпасом на линии, не изменяя диаметра колеса.
  • Восстановив низконапорный насос, перекрывают байпаеную линию и продолжают дальнейшую эксплуатацию насоса в технологическом процессе.
Читайте также:  Что Такое Стандарт И Для Чего Он Нужен?

К третьему методу можно отнести — снижение напора насоса с помощью обточки колеса (см. выше). Напор насоса находится в квадратичной зависимости от диаметра колеса, и это можно эффективно использовать. Например, насос НБ5-50-160 имеет оптимальные параметры 25/32 при диаметре колеса 160 мм.

Завод может поставить насос с колесом 150 мм, обеспечивающий параметры 25/24 (снижение напора на 20%). Обточка рабочего колеса до диаметра 130 мм обеспечивает параметры 25/16, при этом к.п.д. насоса практически сохраняется на уровне 65%. Возможно и дальнейшее уменьшение диаметра колеса, но к.п.д. начинает резко снижаться.

(Уменьшение диаметра колеса на 30% незначительно влияет на к.п.д. насоса). Один из эффективных методов взаимозаменяемости в насосном оборудовании — незначительные конструктивные изменения,позволяющие применить насос для определенных условий. Иногда насос легко.

подобрать по основным параметрам (подача, напор), но заменяемый насос имеет характерные конструктивные особенности, обеспечивающие специфические условия работы. Примером может служить использование обычных консольных насосов вместо повысительных — установка вибропоглощающих подставок. К этому же методу следует отнести установку подогревающих рубашек на насосы без обогрева с целью приспособления их для перекачивания застывающих при обычной температуре жидкостей или с целью охлаждения насоса, например, приспособление обычного шестеренного насосу вместо насоса типа «ШГ» с помощью установки на присоединительных фланцах обогреваемых рубашек.

К этому же методу следует отнести применение «вакуумного бачка», позволяющее преобразовать обычный центробежный или вихревой насос в самовсасывающий. Один из нетрадиционных приемов заменяемости насосов -приспособление элементов и устройств системы к насосу.

  • Например, в практике потребители часто сталкиваются с отсутствием погружных насосов при наличии на аналогичные параметры насосов консольной конструкции.
  • Перед потребителем стоит достаточно типовая задача «применение консольной конструкции вместо погружной конструкции».
  • При этом бывает достаточно установить или приспособить ранцевый патрубок в нижней части емкости для подсоединения всасывающего патрубка насоса консольной конструкции, чтобы заменить насос погружной конструкции, устанавливаемый над емкостью.

Особо следует отметить использование объемных насосов вместо центробежных. Ввиду того, что при работе объемных насосов подача не зависит от напора (исключая протечки), при замене необходимо более внимательно проанализировать всю гидравлическую систему и прежде всего, как будет реагировать система, если через нее не будет осуществляться прохождение жидкости, например, закроется задвижка на напорной линии.

Объемный насос будет повышать давление до величины, которое позволит его конструкция или настройка предохранительного перепускного клапана. С другой стороны объемный насос может развивать сколь угодно низкое давление от номинального, а потому он «охватывает» весь диапазон низких напоров при данной подаче.

Соответственно его возможности по замене насосов при данном значении подачи неограниченны в сторону ниже номинального. Обобщая изложенное в части взаимозаменяемости насосного оборудования, можно сделать вывод, что при одинаковой конструктивной компоновке насоса, как правило, имеется возможность замены, причем насос, предназначенный для перекачивания специальных (определенных) жидкостей может заменить насос для воды.

Как определить полный напор насоса?

В технической литературе полный напор насоса определяется как полезная механическая работа, сообщенная насосом перекачиваемой жидкости и отнесенная к силе тяжести подаваемой жидкости. Проще сказать, напор равен разности давления, измеренного на напорном патрубке, и входного давления на всасывающем патрубке.

Как создается давление в насосе?

Принцип работы водяных насосов Honda Принцип работы Принцип действия всех насосов основан на использовании основных физических свойств жидкостей. Когда движущаяся часть насоса (крыльчатка (рабочее колесо), лопасть, мембранно-поршневой узел и т.д.) начинает двигаться, воздух выталкивается в сторону. Атмосферное давление На уровне моря Земная атмосфера оказывает давление на нас, равное 1 атмосфере. Если один конец трубы поместить в воду, а на другом конце создать идеальный вакуум, в 1 атмосферу, то в трубе может удерживаться столб воды высотой 10 м. Разность давлений В природе движение воздушных и водяных масс осуществляется от места с более высоким давлением к месту с низким давлением. Метеостанции отслеживают, как высокие давления движутся к низким давлениям. Такой принцип движения частиц используется в насосах. Жидкость из зоны высокого давления, всегда будет перемещаться в зону низкого давления. Центробежная сила Центробежный насос работает по принципу всасывания через соломинку. При запуске двигателя крыльчатка (рабочее колесо) вращается и создает центробежную силу, под действием которой начинает прижиматься к стенкам улиты (корпуса насоса), обтекая ее попадает в выпускной патрубок и выталкивается наружу. Герметичность насосной части Т.к. для работы насоса используется принцип создания частичного вакуума, то конструкция корпуса насоса должна обеспечивать выполнения 3 условий:

Корпус насоса должен быть всегда заполнен водой. Вода в корпусе необходима для смазки механического уплотнения в целях предотвращения его износа и протекания. Во избежание подсасывания воздуха и нарушения вакуума всасывающий патрубок, шланговые уплотнения и все уплотнительные кольца должны быть в хорошем состоянии. В целях достижения надлежащего вакуума зазор между крыльчаткой и улиткой должен быть в пределах допустимых значений, указанных в руководстве по эксплуатации.

Типы насосов HONDA Тип водяного насоса определяется конструкцией насосной части, которая пропускает через себя поток определенной жидкости. Поэтому в зависимости от диаметра рабочей полости улиты и диаметра крыльчатки зависит — производительность насоса, от количества и формы лопаток крыльчатки — высота подъема, а от материала изготовления — тип перекачиваемой жидкости.

Стандартный тип насосов HONDA (серии WX, WB). Предназначены для перекачивания только чистой или слабозагрязненной воды. Многофункциональный тип насосов HONDA (серия WMP20X). Насосная часть изготовлена из специального высоко прочного пластика не восприимчивая к воздействию кислот и щелочей. Предназначены для перекачивания не только чистой или слабозагрязненной воды, но и соленой (морской) воды, а также агрессивных жидкостей: сельхоз удобрений, промышленных и сельскохозяйственных химикатов.

Высокого давления тип насосов HONDA (серия WH).Крыльчатка насоса имеет большой диаметр с большим количеством лопаток для создания большого давления. Предназначены для перекачивания только чистой или слабозагрязненной воды, но с очень большой высотой напора (подъема).

Грязевой тип насосов HONDA для перекачки песчано-гравийной водяной смеси (серия WT). Насосная часть изготовлена из специального высоко прочного чугуна не восприимчивая к воздействию абразивного материала, такого как песок и гравий. Крыльчатка имеет специальную конструкцию редкого расположения лопаток, но имеющими большие размеры.

Предназначены для перекачивания не только чистой или слабозагрязненной воды, но и для перекачки песчано-гравийной водяной смеси. Производительность насоса Рабочие характеристики, указанные в руководстве по эксплуатации, отражают показатели, полученные в ходе стандартных (типовых) испытаниях. Производители насосов, результаты в таких испытаниях получают с помощью манометра и расходомера, подключенного к выходному патрубку. Особенности расчета производительности насоса

При выборе конкретного водяного насоса следует рассчитать необходимые для вашего случая применения рабочие характеристики. Определите, с какой глубины будет происходить забор воды насосом (глубина всасывания). Определите, насколько высоко будет находится выпускной шланг (высота напора). Определите, на какое расстояние будет перекачиваться жидкость от места забора до места подачи (высота напора).

Определите, какой должна быть производительность (л/мин) насоса. Учитывая общую (совокупную) высоту подъема (глубина всасывания + напор), пропускную способность можно определить по диаграмме производительности. Имейте в виду, что фактическая производительность такой системы, как насос и шланги, может быть значительно меньше, чем рассчитанная при испытаниях, из-за наличия потерь производительности на трение при прохождении жидкости в шлангах. Особые примечания При выборе насоса часто учитывается только общая высота напора. Однако, если не учитывать потери на трение этот метод часто может привести к серьезной ошибке, и во многих случаях производительность насоса не оправдает ожиданий. Процесс выбора становится еще более сложным, когда используется насадки, сопла, или спринклеры.

  1. Для того чтобы точно рассчитать производительность центробежного насоса в рамках конкретного применения, следует учитывать потери общего напора.
  2. Эти потери включают, кроме прочего: общий статический напор, потери из-за размера, длины и материала труб, а также потери вследствие использования насадок, сопел, или спринклеров.

Точный расчет производительности и давления для данного насоса в рамках конкретного применения требует кропотливых расчетов и сопровождается большим количеством проб и ошибок. Материалы водовыпуска и производительность (потери на трение) Другим физическим свойством является то, что жидкость, движущаяся через шланг, создает тепло из-за трения двух поверхностей (вода и шланг). В стальной трубе трение будет больше, чем в гладкой трубе из ПВХ или винила. Атмосферное давление На уровне моря Земная атмосфера оказывает давление на нас, равное 1 атмосфере. Если один конец трубы поместить в воду, а на другом конце создать идеальный вакуум, в 1 атмосферу, то в трубе может удерживаться столб воды высотой 10 м.

Такое условие можно получить только на уровне моря и только с идеальным вакуумом. В действительности, ВСЕ центробежные насосы могут поднимать (всасывать) воду не более чем с глубины 8 м на уровне моря. И это показатель (глубина всасывания) снижается примерно на полметра при повышении нахождения насоса м над уровнем моря каждые 300 метров.

Глубина всасывания и производительность Атмосфера играет важную роль, оказывая давление в 1 атмосферу на земной поверхности, в том числе и на любой водоём, но только находящимся на уровне моря. Этот фактор ограничивает глубину всасывания (на входе) центробежных насосов до 10 м.

  • Однако этот показатель можно было бы получить только в том случае, если бы мы смогли достичь идеального вакуума в насосе.
  • В действительности, напор подачи центробежных насосов ограничен примерно 8 м.
  • Производительность насоса (мощность или давление) является самой высокой, когда насос работает вблизи поверхности воды.

Увеличение глубины всасывания СНИЗИТ напор выпуска и, следовательно, пропускную способность насоса. Самое главное, что в целях снижения вероятности кавитации напор подачи следует поддерживать на уровне наименьшего возможного значения. Кавитация может также возникать при засорении всасывающего шланга.

  • Никогда не используйте шланг подачи с диаметром, меньшим чем диаметр входного патрубка.
  • Кавитация может быстро повредить насос.
  • Напор выпуска и производительность Атмосфера играет важную роль в том, насколько высоко мы можем вытолкнуть воду.
  • Вода тяжелая; около 0,9 г/см3.
  • Старая поговорка: «все возвращается на круги своя» подтверждает закономерность возврата воды к своему источнику.

Механическая энергия крыльчатки передает свою силу воде, соприкасающейся с ней. Эта сила может быть измерена в килограммах на квадратный сантиметр выпуска насоса. По мере увеличения высоты напора выпуска насоса производительность насоса (л/мин) уменьшается, а также уменьшается давление в конце выпускного шланга (если поток остановлен или используется спринклер / сопло).

  1. В точке максимального напора пропускная способность (л/мин) упадет до нуля, и в конце шланга не будет давления для запуска спринклера или сопла.
  2. Если бы мы измерили давление в нижней части сливного шланга, мы бы увидели максимальное давление напора, которое было бы результатом поддержки насосом веса воды находящегося во всем выпускном шланге.

Рабочие характеристики показывают соотношение между пропускной способностью и общим (совокупным) напором. Длина выпускной магистрали и производительность По мере увеличения длины выпускного шланга вода контактирует с большей площадью поверхности шланга.

  1. Как рассказывалось ранее, внутренняя стенка выпускного шланга (при контакте с быстрым потоком воды) создаст трение.
  2. Увеличение силы трения замедляет движение воды и уменьшит производительность насоса.
  3. Препятствия и производительность Препятствия похожи на плотины для потока воды.
  4. Когда вода ударяется в препятствие, обойти его может только часть потока воды.

Общие рекомендации следующие: выпускной шланг следует располагать как можно более прямо, и, по возможности, избегать уменьшения размера шланга. Препятствия приводят к увеличению трения и снижению пропускной способности на выходе выпускного шлага. Колена (труб) и производительность Установка колен по длине трубы нарушает плавный поток воды.

Турбулентность, создаваемая вокруг этих колен, вызывает увеличение трения, которое уменьшает пропускную способность и производительность насоса. Соединители и клапаны Установка соединителей и клапанов по длине трубы нарушает плавный поток воды. Турбулентность, создаваемая вокруг этих соединений, вызывает увеличение трения, которое уменьшает пропускную способность и производительность насоса.

Высота над уровнем моря и производительность (атмосферные потери) Мощность двигателя снижается с увеличением высоты. Чем выше высота над уровнем моря, тем меньше воздуха для нормальной работы двигателя. Максимальная мощность двигателя снижается примерно на 3,5% с каждыми 300 м над уровнем моря.

Меньше воздуха также оказывает меньшее давление на воду, которую мы пытаемся втянуть в насос. Поскольку давления воздуха для подачи воды в насос меньше, максимально доступный напор подачи снижен. Снижение мощности двигателя также может привести к снижению пропускной способности и производительности насоса.

Читать подробнее: Принцип работы водяных насосов Honda

Как связаны напор и давление?

Связь между напором и давлением — Как можно видеть из рис.6, столб воды высотой 10 м оказывает такое же давление, что и столб ртути (Hg) высотой 0,7335 м. Умножив высоту столба (напор) на плотность жидко­сти и ускорение свободного падения (g), получим давление в ньютонах на квадратный метр (Н/м 2 ) или в паска­лях (Па). Уравнение на рис.6 можно решить в метрах высоты столба жидкости: Таким образом, высоту столба жид­костей с различной вязкостью можно привести к эквивалентной высоте во­дяного столба. На рис.7 приводятся коэффициенты преобразования для множества различных единиц изме­рения давления. Ниже показан пример расчета общего гидравлического напора со схемой установки насоса. Гидравлическая мощность (P hyd ) насо­са определяет объем жидкости, пода­ваемой при данном напоре за данное время, и может быть рассчитана с по­мощью следующей формулы:

В чем измеряется напор?

Единица напора в Международной системе единиц (СИ) — метр, в системе СГС — сантиметр.

Что значит максимальный напор для насоса?

Что такое напор насоса? Напор насоса – это сила давления, создаваемая лопастями или поршнем насоса, приложенная к тому, чтобы протолкнуть воду. Обычно указывается в метрах. Не путайте напор с расходом! Расход насоса — Это количество проходящей жидкости в единицу времени.

То есть это способность насоса качать какое-либо количество литров в минуту. Обычно указывается в литрах в час. Или универсальная единица: — это кубометр в час, Почему напор насоса измеряется в метрах? Во-первых, потому что просто так договорились! Во-вторых, это удобно! Удобно тем, что не нужно переводить в другие единицы измерения параметры насоса, чтобы, что-то посчитать.

Напор насоса, измеряемый метрами — говорит нам о том, что воду он сможет поднять на высоту этих указанных метров напора. Каждые 10 метров напора — это одна атмосфера (1 Bar). Если напор 35 метров — это 3,5 Bar. Например: Имеется у нас насос с напором 60 метров. На рисунке изображена емкость, в которой находится вода, и в нее помещен насос. Насос соединен с трубой определенной длины. Напором насоса, указанный метрами, способен поднять столб воды на высоту напора, как указано на изображении. Подробнее о параметрах насоса,

Как изменяется напор при изменении подачи?

Характеристика насосной системы — Трение, имеющее место в трубопроводной сети, ведет к потере давления перекачиваемой жидкости по всей длине. Кроме этого, потеря давления зависит от температуры и вязкости перекачиваемой жидкости, скорости потока, свойств арматуры и агрегатов, а также сопротивления, обусловленного диаметром, длиной и шероховатостью стенок труб. Характеристика системы Форма характеристики показывает следующие зависимости: Причиной гидравлического сопротивления, имеющего место в трубопроводной сети, является трение воды о стенки труб, трение частиц воды друг о друга, а также изменение направления потока в фасонных деталях арматуры.

  • При изменении подачи, например, при открывании и закрывании термостатических вентилей, изменяется также скорость потока и, тем самым, сопротивление.
  • Так как сечение труб можно рассматривать как площадь живого сечения потока, сопротивление изменяется квадратично.
  • Поэтому график будет иметь форму параболы.

Эту связь можно представить в виде следующего уравнения: H1/H2 = (Q1/Q2) 2 Выводы Если подача в трубопроводной сети уменьшается в два раза, то напор падает на три четверти. Если, напротив, подача увеличивается в два раза, то напор повышается в четыре раза. Изменяющаяся рабочая точка

Что такое перепад давления на насосе?

Продажа профессионального насосного оборудования из Европы без посредников с доставкой по России. Официальный дистрибьютор HOMA Pumpenfabrik GmbH и Richard Halm GmbH + Co KG в Российской Федерации.125635, г.Москва, ул. Учинская, д.7, info@pump-tech.ru Вопрос: Что такое перепад давления в насосе? Ответ: Это разница в абсолютном давлении на входе и выходе насоса в ходе его работы.

Как измеряется подача насоса?

Ключевые характеристики любого насоса для водоснабжения, отопления или канализации — это напор и подача. Как правило, чтобы подобрать насос под конкретную задачу нужно выяснить именно эти характеристики (помимо напряжения электропитания, производительности, габаритов и т.п.).

Проще говоря, перед тем как вплотную заняться подбором насосной установки, необходимо понять какой объём перекачиваемой жидкости и на какую высоту должен быть способен поднять насос, чтобы обеспечить решение поставленной перед ним задачи. Согласно стандарту EN 12723 одно из основных энергетических понятий центробежных насосов разделяют на понятия напора насоса и напора установки.

Напор насоса – это разность полных удельных энергий жидкости на выходе и входе насоса. Напор пропорционален производительности насоса (PQ), передаваемой от насоса к перекачиваемой среде: ρ плотность перекачиваемой среды (кг/м3) g ускорение свободного падения (м/с2) H напор насоса (м) Q подача (м3/с) Сумма мощностей (положительная подводимая мощность, отрицательная отдаваемая мощность) в форме производительности (PQ) в пределах системы равняется нулю.

  • См. рис.1 Напор) Подача насоса (Q) центробежного насоса – это необходимый объем потока, переносимый насосом через его выходное сечение.
  • При расчете подачи насоса необходимо учитывать объем потоков, отводимых из выходного отверстия насоса для других целей (например, байпас).
  • При заметной сжимаемости перекачиваемой жидкости необходимо производить перерасчет на состояние всасывающего патрубка насоса по следующей формуле: (Qs + Qd)/2.

Единица измерения подачи – м3/с, однако общепринятыми в технике центробежных насосов являются м3/ч и л/с. Для измерения подачи существуют различные способы (см. «Измерение скорости протекания»). Существуют разные виды подачи в зависимости от их расположения на кривой напора.

Наилучшая (оптимальная) подача (Q opt): подача в рабочей точке наилучшего (наивысшего) КПД, когда частота вращения и количество перекачиваемой жидкости соответствуют договору поставкиНоминальная подача (QN): подача, рассчитанная для насосаПодача в соответствии с договором поставки (QLie): подача, указанная в договоре поставки (подтверждении заказа)Наименьшая подача (Qmin): минимально допустимая подача, которую насос может длительно перекачивать без повреждений, при частоте вращения и перекачиваемой жидкости в соответствии с договором поставкиМаксимальная подача (Qmax): максимально допустимая подача, которую насос может длительно перекачивать без повреждений, при частоте вращения и перекачиваемой жидкости в соответствии с договором поставкиВысшая точка подачи (QSch): подача в высшей точке (относительный максимум кривой напора) нестабильной кривой напора (см.«Характеристическая кривая»)Ток разгрузки (QE)Расход протечек через зазоры (QL)Объемный расход на стороне всаса (Qs): объемный расход через всасывающий патрубок насосаОбъемный расход на входе (Qe): объемный расход через входное поперечное сечение установкиОбъемный расход с напорной стороны (Qd): объемный расход через нагнетательный патрубок насосаОбъемный расход на выходе (Qa): объемный расход через выходное сечение установки. (см. рис.2 Напор)

P.S. Если у Вас возникли вопросы, пожелания, рекомендации — можете писать прямо здесь, в комментариях.

Как рассчитать напор центробежного насоса?

Как правильно рассчитать необходимый насос — Для того, чтобы выполнить гидравлический расчет центробежного насоса следует рассчитывать каждый параметр, включая производительность (W = l1*(п*d1 – b*n)*c1 = l2*(п*d2 – b*n)*c2), напор (N = (h2 – h1)/(p * g) + Ng + sp), потребляемую мощность (M = p*g*s*N), пиковую высоту всасывания воды или любого другого отопительного элемента (Nv = (h1 – h2)/(p * g) – sp – q2/(2*g) – k*N).

Какое давление должно быть в насосе для воды?

Максимальное давление воды, на которое рассчитан гидроаккумулятор, указывается на его шильде. Как правило, это давление составляет 10 бар, что вполне достаточно для любой бытовой системы водоснабжения.

Читайте также:  Чему Равен 1 Мпа В Па?

Что такое напор в насосе?

Работа центробежного насоса в трубопроводной сети

Подача (производительность) — это количество жидкости, перемещаемое насосом за единицу времени.

Подача может быть выражена по-разному: Q — объемная подача, ; G — массовая подача,, Между массовой и объемной подачей есть взаимосвязь:

(1)

где r — плотность перекачиваемой жидкости,,

Подача насоса зависит от его конструкции, скорости вращения рабочего колеса, вязкости жидкости и характеристики трубопровода, по которому насос перемещает жидкость.

Измерить подачу насоса можно различными приспособлениями:,, Для измерения подачи используются также автоматические приборы, передающие информацию о подаче на ЭВМ в форме электрического сигнала. Одной из важнейших задач, которые приходится решать при эксплуатации центробежного насоса, является регулирование его подачи.

Напор насоса — это энергия, которую получает объем жидкости весом в 1 Ньютон при прохождении через насос.

Обозначается напор H и измеряется в метрах столба рабочей (перекачиваемой) жидкости,, Напор можно рассматривать и с геометрической точки зрения как высоту, на которую может быть поднят 1 Ньютон жидкости за счет энергии, вырабатываемой насосом. Зависимость напора центробежного насоса от его объемной подачи изображают в виде графика, который называется напорной характеристикой насоса.

Напорная характеристика зависит от конструкции насоса (модели), скорости вращения рабочего колеса и вязкости перекачиваемой жидкости. Напорная характеристика насоса дает представление о возможностях данного насоса,

Для отображения этого элемента необходимо установить плагин AdobeSVGViewer3 Напорные характеристики насосов представляют в справочниках и каталогах насосного оборудования. Хочется заострить внимание на том, что напорная характеристика насоса не зависит от плотности перекачиваемой жидкости, но зависит от вязкости жидкости,

Чем больше вязкость жидкости, тем ниже располагается напорная характеристика. В справочниках приводятся напорные характеристики насосов для перекачки воды, поэтому, если необходимо перекачивать жидкость, имеющую вязкость, сильно отличающуюся от вязкости воды, то характеристику, взятую из справочника, нужно пересчитать (перестроить) по определенной методике.

Методика, по которой выполняется пересчет напорной характеристики на другую вязкость приведена, Напорную характеристику можно получить только при испытании реального насоса. Обычно испытывают насос при какой-либо скорости вращения рабочего колеса, перекачивая воду, и находят напор по показаниям измерительных приборов (формула 2 или 3), при различных подачах данного насоса.

(2)

где P м – показания манометра, ; P в – показания вакууметра, ; g=9,8 — ускорение свободного падения ; z — расстояние по вертикали между точками подключения манометра и вакууметра, ; d вс — диаметр всасывающего трубопровода, ; d н — диаметр напорного трубопровода, ; Q — подача насоса,, измеренная каким-либо методом (см пункт )., то формула упрощается:

(3)

Если для нахождения напора используется формула (2) или (3), то говорят, что напор определяется опытным путем. Формулы (2) и (3) пригодны для определения напора, если перед насосом получается разрежение. Потренероваться в определении напора можно зайдя по,

(4)

где H г – геометрический напор, ; P 1, P 2 – давления в расходном и приемном резервуарах, ; λ вс, λ н — коэффициенты трения во всасывающем и напорном трубопроводах; l вс, l н — длины всасывающего и напорного трубопроводов, ; ξ вс, ξ н – коэффициенты местных сопротивлений всасывающего и напорного трубопроводов.

Напор, найденный по формуле (4) называют потребным напором, то есть напором, который требуется создать с помощью насоса для обеспечения заданной подачи жидкости насосной установкой.

Вообще, формула (4) является математическим выражением напорной харатеристики трубопроводной сети, Смысл этой формулы рассмотрен в разделе,

Полезная мощность – это энергия, отдаваемая жидкости за единицу времени при работе насоса.

Полезная мощность обозначается N п, измеряется в СИ в Ваттах, Полезную мощность можно определить по формуле:

(5)

table>

Общий к.п.д. (коэффициент полезного действия) насоса — это отношение полезной мощности к мощности на валу.

table>

(6)

Общий к.п.д. выражает, какая доля потребляемой насосом энергии преобразуется в полезную энергию. Полезная энергия — это энергия, отдаваемая жидкости. Потребляемая энергия — это энергия, затрачиваемая двигателем при вращении рабочего колеса насоса. Полезная энергия меньше, чем потребляемая, так как в процессе преобразования энергии, осуществляемого центробежным насосом, часть энергии неизбежно теряется.К.п.д.

Зависимость общего к.п.д. насоса от подачи определяется конструкцией насоса, скоростью вращения его рабочего колеса и вязкостью перекачиваемой жидкости.

table>

Мощность на валу – это энергия, потребляемая насосом за единицу времени.

Другими словами, мощность на валу — это энергия, передаваемая валу рабочего колеса от электродвигателя. Обозначается мощность на валу N в, измеряется в СИ в Ваттах -, Мощность на валу и полезная мощность связаны соотношением:

(7)

Или в развернутом виде:

(8)

table>

Мощность на валу является важным параметром, дающим представление об энергопотреблении работающего насоса.

table>

Характер зависимости мощности на валу от подачи определяется не только конструкцией насоса и скоростью вращения его рабочего колеса, но и плотностью перекачиваемой жидкости, причем чем больше плотность, тем больше мощность на валу при прочих одинаковых условиях

Типичная для центробежного насоса зависимость мощности на валу от подачи представлена на рисунке. В общем, при увеличении подачи потребляемая мощность растет. Подобные графические характеристики представлены в каталогах и справочниках насосного оборудования. Однако следует иметь в виду, что эти характеристики относятся к перекачке воды, поэтому для определения действительной мощности, потребляемой насосом при перекачке жидкости, плотность которой отлична от плотности воды, нужно выполнить пересчет:

(9)

где — мощность, потребляемая при перекачке жидкости; — мощность для перекачки воды, определенная по графическим характеристикам; — плотность воды; — плотность перекачиваемой жидкости.

Прежде чем говорить о допустимой высоте всасывания, необходимо сначала разобраться, что называют высотой всасывания. Следующий рисунок поясняет смысл этого термина. Для отображения этого элемента необходимо установить плагин AdobeSVGViewer3 с сайта http://www.adobe.com/svg/viewer/install/ Высотой всасывания называют расстояние по вертикали от уровня жидкости в расходном резервуаре до всасывающего патрубка насоса.

Допустимая высота всасывания — это максимальное расстояние по вертикали от уровня жидкости в расходном резервуаре до всасывающего патрубка насоса, при котором не возникает кавитации.

Кавитация — крайне нежелательное явление, заключающееся в образовании пузырьков из пара перекачиваемой жидкости, поступающей в насос, и резком схлопывании этих пузырьков внутри насоса. Пузырьки образуются, если давление в потоке жидкости снижается до давления ее насыщенного пара.

  1. Обычно во всасывающем трубопроводе давление снижается от расходного резервуара до насоса.
  2. Поэтому минимальное давление (максимальное разрежение) действует перед насосом или на входе в рабочее колесо насоса.
  3. Именно там и проявляется кавитация.
  4. Это явление сопровождается вибрацией в трубопроводной системе и насосе и ведет к быстрому разрушению рабочих органов насоса.

Чтобы кавитации не возникало, высота всасывания должна быть меньше допустимой, рассчитанной по формуле:

(10)

где P 1 — давление над жидкостью в расходном резервуаре, ; P н.п. — давление насыщенного пара перекачиваемой жидкости при ее температуре, ; λ — коэффициент трения во всасывающем трубопроводе; l — длина всасывающего трубопровода, ; d — диаметр всасывающего трубопровода, ; ζ — коэффициенты местных сопротивлений, имеющиеся на всасывающем трубопроводе; h к — кавитационная поправка,,

(11)

где n — скорость вращения рабочего колеса,, Если на всасывающем трубопроводе есть задвижки, то при работе насоса они должны быть полностью открыты, а их коэффициенты сопротивлений ζ должны быть учтены при расчете допустимой высоты всасывания по формуле (10). Читать подробнее: Работа центробежного насоса в трубопроводной сети

Как создается давление?

Давление газа — урок. Физика, 7 класс. Давление газа обусловлено иными причинами, чем давление твёрдого тела на опору. Расстояния между молeкулами газа значительно больше. Двигаясь хаотично, молекулы сталкиваются между собой и ударяют о стенки занимаемого им сосуда.

Давление газа на стенки сосуда и вызывается этими ударами молекул газа. Рис. \(1\). Газ в сосуде Обрати внимание! Давление газа тем больше, чем чаще и сильнее молекулы ударяют о стенки сосуда. Для газа характерно одинаковое давление по всем направлениям, оно является следствием беспорядочного движения огромного числа молекул.

Давление газа на внутренние поверхности (дно, крышку, стенки) сосуда, в который он помещён, одинаково по всем направлениям, Рис. \(2\). Газ в воздушном шаре Все воздушные шары приобретают форму, в которой давление равномерно растягивает стенки шара. Сфера (шар) — форма, в которой давление на поверхность имеет наименьшее значение и равномерно по всем направлениям. Рис. \(3\). Сжатые газы Свойства 1, При уменьшении объёма газа его давление увеличивается, а при увеличении объёма — давление уменьшается (при условии, что масса и температура газа остаются неизменными).2, Давление газа в закрытом сосуде тем больше, чем выше температура газа (при условии, что масса газа и объём не изменяются). Рис. \(4\). Подогрев газа в сосуде 3, При увеличении массы газа давление увеличивается и наоборот. Источники: Рис.1. Газ в сосуде. Рис.2. Газ в воздушном шаре. Рис.4. Подогрев газа в сосуде. Горелка. Указание авторства не требуется, 2021-07-29. Pixabay License, https://pixabay.com/images/id-3053616/.

Что называется напором?

Напо́р (более точно по́лный напо́р ) (в гидравлике и гидромеханике ) — физическая величина, равная удельной энергии потока жидкости в рассматриваемой точке, Обычно рассматривается для течений несжимаемой жидкости в поле сил тяжести и определяется из уравнения Бернулли соотношением: где — вертикальная координата рассматриваемой точки относительно некоторого выбранного уровня (отсчитываемая вверх, против направления силы тяжести), — давление в жидкости, — ускорение свободного падения, — модуль скорости жидкости. Единица напора в Международной системе единиц (СИ) — метр, в системе СГС — сантиметр, Пьезометрическим напором называют величину которую удобно использовать в гидрологических измерениях, т.к. эта величина с точностью до постоянного слагаемого равна высоте столба жидкости в колене водяного манометра. Входящие в выражение для полного напора слагаемые имеют специальные названия:

  • — геометрическая (нивелирная) высота,
  • — пьезометрическая высота,
  • — скоростная высота ( скоростной напор ).

При стационарном течении несжимаемой идеальной (невязкой) жидкости в силу интеграла Бернулли полный напор сохраняется вдоль линии тока, При течении реальных жидкостей вдоль линии тока напор уменьшается за счёт диссипативных процессов (вязкого трения).

  1. Разность напора в двух поперечных сечениях потока реальной жидкости называется потерянным напором (гидравлическими потерями, утратами напора).
  2. Понятие о напоре используется при проектировании гидротехнических сооружений и решении многих задач гидравлики и гидродинамики.
  3. При использовании метода электрогидравлических аналогий гидравлический напор аналогичен электрическому напряжению (в то время как подача или расход аналогичны силе тока ).

Потерянный напор аналогичен падению напряжения,

В чем измеряется напор?

Работа центробежного насоса в трубопроводной сети

Подача (производительность) — это количество жидкости, перемещаемое насосом за единицу времени.

Подача может быть выражена по-разному: Q — объемная подача, ; G — массовая подача,, Между массовой и объемной подачей есть взаимосвязь:

(1)

где r — плотность перекачиваемой жидкости,,

Подача насоса зависит от его конструкции, скорости вращения рабочего колеса, вязкости жидкости и характеристики трубопровода, по которому насос перемещает жидкость.

Измерить подачу насоса можно различными приспособлениями:,, Для измерения подачи используются также автоматические приборы, передающие информацию о подаче на ЭВМ в форме электрического сигнала. Одной из важнейших задач, которые приходится решать при эксплуатации центробежного насоса, является регулирование его подачи.

Напор насоса — это энергия, которую получает объем жидкости весом в 1 Ньютон при прохождении через насос.

Обозначается напор H и измеряется в метрах столба рабочей (перекачиваемой) жидкости,, Напор можно рассматривать и с геометрической точки зрения как высоту, на которую может быть поднят 1 Ньютон жидкости за счет энергии, вырабатываемой насосом. Зависимость напора центробежного насоса от его объемной подачи изображают в виде графика, который называется напорной характеристикой насоса.

Напорная характеристика зависит от конструкции насоса (модели), скорости вращения рабочего колеса и вязкости перекачиваемой жидкости. Напорная характеристика насоса дает представление о возможностях данного насоса,

Для отображения этого элемента необходимо установить плагин AdobeSVGViewer3 Напорные характеристики насосов представляют в справочниках и каталогах насосного оборудования. Хочется заострить внимание на том, что напорная характеристика насоса не зависит от плотности перекачиваемой жидкости, но зависит от вязкости жидкости,

Чем больше вязкость жидкости, тем ниже располагается напорная характеристика. В справочниках приводятся напорные характеристики насосов для перекачки воды, поэтому, если необходимо перекачивать жидкость, имеющую вязкость, сильно отличающуюся от вязкости воды, то характеристику, взятую из справочника, нужно пересчитать (перестроить) по определенной методике.

Методика, по которой выполняется пересчет напорной характеристики на другую вязкость приведена, Напорную характеристику можно получить только при испытании реального насоса. Обычно испытывают насос при какой-либо скорости вращения рабочего колеса, перекачивая воду, и находят напор по показаниям измерительных приборов (формула 2 или 3), при различных подачах данного насоса.

(2)

где P м – показания манометра, ; P в – показания вакууметра, ; g=9,8 — ускорение свободного падения ; z — расстояние по вертикали между точками подключения манометра и вакууметра, ; d вс — диаметр всасывающего трубопровода, ; d н — диаметр напорного трубопровода, ; Q — подача насоса,, измеренная каким-либо методом (см пункт )., то формула упрощается:

(3)

Если для нахождения напора используется формула (2) или (3), то говорят, что напор определяется опытным путем. Формулы (2) и (3) пригодны для определения напора, если перед насосом получается разрежение. Потренероваться в определении напора можно зайдя по,

(4)

где H г – геометрический напор, ; P 1, P 2 – давления в расходном и приемном резервуарах, ; λ вс, λ н — коэффициенты трения во всасывающем и напорном трубопроводах; l вс, l н — длины всасывающего и напорного трубопроводов, ; ξ вс, ξ н – коэффициенты местных сопротивлений всасывающего и напорного трубопроводов.

Напор, найденный по формуле (4) называют потребным напором, то есть напором, который требуется создать с помощью насоса для обеспечения заданной подачи жидкости насосной установкой.

Вообще, формула (4) является математическим выражением напорной харатеристики трубопроводной сети, Смысл этой формулы рассмотрен в разделе,

Полезная мощность – это энергия, отдаваемая жидкости за единицу времени при работе насоса.

Полезная мощность обозначается N п, измеряется в СИ в Ваттах, Полезную мощность можно определить по формуле:

(5)

table>

Общий к.п.д. (коэффициент полезного действия) насоса — это отношение полезной мощности к мощности на валу.

table>

(6)

Общий к.п.д. выражает, какая доля потребляемой насосом энергии преобразуется в полезную энергию. Полезная энергия — это энергия, отдаваемая жидкости. Потребляемая энергия — это энергия, затрачиваемая двигателем при вращении рабочего колеса насоса. Полезная энергия меньше, чем потребляемая, так как в процессе преобразования энергии, осуществляемого центробежным насосом, часть энергии неизбежно теряется.К.п.д.

Зависимость общего к.п.д. насоса от подачи определяется конструкцией насоса, скоростью вращения его рабочего колеса и вязкостью перекачиваемой жидкости.

table>

Мощность на валу – это энергия, потребляемая насосом за единицу времени.

Другими словами, мощность на валу — это энергия, передаваемая валу рабочего колеса от электродвигателя. Обозначается мощность на валу N в, измеряется в СИ в Ваттах -, Мощность на валу и полезная мощность связаны соотношением:

(7)

Или в развернутом виде:

(8)

table>

Мощность на валу является важным параметром, дающим представление об энергопотреблении работающего насоса.

table>

Характер зависимости мощности на валу от подачи определяется не только конструкцией насоса и скоростью вращения его рабочего колеса, но и плотностью перекачиваемой жидкости, причем чем больше плотность, тем больше мощность на валу при прочих одинаковых условиях

Типичная для центробежного насоса зависимость мощности на валу от подачи представлена на рисунке. В общем, при увеличении подачи потребляемая мощность растет. Подобные графические характеристики представлены в каталогах и справочниках насосного оборудования. Однако следует иметь в виду, что эти характеристики относятся к перекачке воды, поэтому для определения действительной мощности, потребляемой насосом при перекачке жидкости, плотность которой отлична от плотности воды, нужно выполнить пересчет:

(9)

где — мощность, потребляемая при перекачке жидкости; — мощность для перекачки воды, определенная по графическим характеристикам; — плотность воды; — плотность перекачиваемой жидкости.

Прежде чем говорить о допустимой высоте всасывания, необходимо сначала разобраться, что называют высотой всасывания. Следующий рисунок поясняет смысл этого термина. Для отображения этого элемента необходимо установить плагин AdobeSVGViewer3 с сайта http://www.adobe.com/svg/viewer/install/ Высотой всасывания называют расстояние по вертикали от уровня жидкости в расходном резервуаре до всасывающего патрубка насоса.

Допустимая высота всасывания — это максимальное расстояние по вертикали от уровня жидкости в расходном резервуаре до всасывающего патрубка насоса, при котором не возникает кавитации.

Кавитация — крайне нежелательное явление, заключающееся в образовании пузырьков из пара перекачиваемой жидкости, поступающей в насос, и резком схлопывании этих пузырьков внутри насоса. Пузырьки образуются, если давление в потоке жидкости снижается до давления ее насыщенного пара.

Обычно во всасывающем трубопроводе давление снижается от расходного резервуара до насоса. Поэтому минимальное давление (максимальное разрежение) действует перед насосом или на входе в рабочее колесо насоса. Именно там и проявляется кавитация. Это явление сопровождается вибрацией в трубопроводной системе и насосе и ведет к быстрому разрушению рабочих органов насоса.

Чтобы кавитации не возникало, высота всасывания должна быть меньше допустимой, рассчитанной по формуле:

(10)

где P 1 — давление над жидкостью в расходном резервуаре, ; P н.п. — давление насыщенного пара перекачиваемой жидкости при ее температуре, ; λ — коэффициент трения во всасывающем трубопроводе; l — длина всасывающего трубопровода, ; d — диаметр всасывающего трубопровода, ; ζ — коэффициенты местных сопротивлений, имеющиеся на всасывающем трубопроводе; h к — кавитационная поправка,,

(11)

где n — скорость вращения рабочего колеса,, Если на всасывающем трубопроводе есть задвижки, то при работе насоса они должны быть полностью открыты, а их коэффициенты сопротивлений ζ должны быть учтены при расчете допустимой высоты всасывания по формуле (10). Читать подробнее: Работа центробежного насоса в трубопроводной сети

В чем измеряется давление?

Единицы измерения — В Международной системе единиц (СИ) измеряется в паскалях (русское обозначение: Па; международное: Pa). Паскаль равен давлению, вызываемому силой, равной одному ньютону, равномерно распределённой по нормальной к ней поверхности площадью один квадратный метр,

бар ; килограмм-сила на квадратный сантиметр; миллиметр водяного столба ; метр водяного столба ; атмосфера техническая ; миллиметр ртутного столба,

При этом наименования и обозначения данных единиц с дольными и кратными приставками СИ не применяются. Существовавшее ранее ограничение срока действия допуска указанных единиц в августе 2015 году было отменено, Кроме того, на практике используются также единицы торр и физическая атмосфера,

Единицы давления

Паскаль (Pa, Па) Бар (bar, бар) Техническая атмосфера (at, ат) Физическая атмосфера (atm, атм) Миллиметр ртутного столба (мм рт. ст., mm Hg, Torr, торр) Миллиметр водяного столба (мм вод. ст., mm H 2 O) Фунт-сила на квадратный дюйм (psi)
1 Па 1 10 −5 1,01972⋅10 −5 9,8692⋅10 −6 7,5006⋅10 −3 0,101972 1,4504⋅10 −4
1 бар 10 5 1 1,01972 0,98692 750,06 10197,2 14,504
1 ат 98066,5 0,980665 1 0,96784 735,56 10 4 14,223
1 атм 101325 1,01325 1,03323 1 760 10332,3 14,696
1 мм рт. ст. 133,322 1,3332⋅10 −3 1,3595⋅10 −3 1,3158⋅10 −3 1 13,595 0,019337
1 мм вод. ст. 9,80665 9,80665⋅10 −5 10 -4 9,6784⋅10 -5 0,073556 1 1,4223⋅10 -3
1 psi 6894,76 0,068948 0,070307 0,068046 51,715 703,07 1

Измерение давления газов и жидкостей выполняется с помощью манометров, дифманометров, вакуумметров, датчиков давления, атмосферного давления — барометрами, артериального давления — сфигмоманометрами,

Как рассчитать давление воды?

Как рассчитывается толщина трубы от действия давления — Когда вода движется по трубе, возникает сопротивление от трения её о стенки, а также о различные преграды. Это явление получило название гидравлическое сопротивление трубопровода. Его численное значение находится в прямой пропорциональной зависимости от скорости потока.

  1. Из предыдущего примера мы уже знаем, что на разных высотах давление воды различно, и эту особенность следует учитывать при расчёте внутреннего диаметра трубы, то есть её толщины.
  2. Упрощённая формула для вычисления данного параметра по заданной потере напора (давления) выглядит так: Д вн = КГСопр×Дл.
  3. Тр./ПД×(Уд.вес×Ск/2g), где: Двн.

– внутренний диаметр трубопровода; КГСопр. – коэффициент гидравлического сопротивления; Дл.тр — длина трубопровода; ПД – заданная или допускаемая потеря давления между конечным и начальным участками магистрали; Уд.вес. – удельный вес воды — 1000 кг/ (9815 м/; Ск.